Вильсон исходил из такого предположения: если в объеме камеры ионы распределены не хаотически, а закономерно, возникшие на них капли должны образовать не молоко равномерного тумана, а определенный ансамбль, повторяющий закономерность расположения ионов в объеме. Если в камере пролетит ионизирующая частица и на своем пути оставит цепочку ионов, капли, образующиеся на них при расширении камеры, составят капельный след. Частицу видеть нельзя, но можно увидеть путь, вдоль которого она пролетела. Был поставлен опыт: в камере помещался источник ?-частиц, и в момент расширения объема камеры отчетливо наблюдались треки — капельные следы, вдоль которых ?-частицы пролетели. Видимо, в действительности все обстояло не так последовательно, строго и организованно, как здесь это описано: мысль — эксперимент — успех! Видимо, цепочка не была такой прямой. Путь к успеху лежал через случайные наблюдения, которые ускользнули бы от невнимательного глаза, через неудачные попытки воспроизвести случайное наблюдение, через минуты и дни отчаяния, когда казалось, что того случайного наблюдения в действительности и не было. Семнадцать лет Вильсон изучал образование капель в своей лаборатории один, с глазу на глаз с туманной камерой, а после 1911 года камера Вильсона стала достоянием всего человечества: вильсоновские камеры разнообразных усовершенствованных конструкций используются почти во всех лабораториях мира, изучающих строение вещества. Множество услуг науке оказала капля, рождающаяся в камере Вильсона. Об одной из них я расскажу подробнее: речь идет о роли, Которую сыграла капля в открытии первой античастицы — позитрона, несущей элементарный положительный заряд, по величине равный заряду электрона. История открытия такова. Прямолинейный трек в камере сообщает о факте пролета частицы. Иногда, глядя на трек, можно понять, в каком направлении частица летела, но практически ничего нельзя сказать ни о ее заряде, ни о ее скорости, во всяком случае точно определить эти величины нельзя. Если же камеру поместить в магнитное поле, в котором заряженные частицы летят по дуге окружности, то по радиусу капельного следа при известном значении напряженности магнитного поля можно узнать о частице многое. Магнитное поле создает силу, которая вынуждает заряженную частицу, летящую по прямой, изменить траекторию полета, перейти на траекторию, которая является дугой окружности. Радиус этой дуги для частицы с определенным отношением величины заряда к величине массы тем больше, чем больше скорость, и тем меньше, чем больше напряженность магнитного поля. А направление движения частицы по дуге окружности определяется знаком ее заряда. Таким образом, в разных условиях опыта, меняя напряженность поля, изменяя радиусы изогнутых орбит, можно получить важные сведения о летящей частице. — 78 —
|