Наконец прилетает фотон с энергией, которая как раз подходит для перескока электрона на вторую орбиту. И атом проглатывает этот фотон. Энергия его передается электрону, тот «прыгает вверх», попадает точно на верхнюю орбиту и застревает там. Но на «втором этаже» электрон обычно живет недолго. Вскоре стремление к устойчивости заставляет его соскользнуть «вниз», на «прочное» и «насиженное» место в «первом этаже». А освобождающуюся энергию атом излучает в виде точно такого же фотона, какой он только что поглотил. Ну, а что произойдет, если в атом врежется фотон очень высокой энергии — большей, чем нужно для прыжка электрона на самую далекую орбиту? Проглотит ли атом такой фотон? Да, может проглотить, но ценой потери электрона. Получив слишком большую энергию, электрон выпрыгнет прочь из атома и обретет свободу. Уяснив эти своеобразные особенности взаимодействия атомов -и света, мы сумеем понять наконец, как получается шифрованная солнечная депеша. РАЗГАДКА ШИФРАПоверхность солнечного шара представляется нам состоящей из ослепительно сверкающей материи. Кажется, зачерпнешь каким-нибудь фокусом ковшик солнечного вещества, донесешь до Земли — и будет сиять эта капля Солнца, расточая вокруг свет и тепло. Нет, не будет, даже если вы доставите ее в фантастически нетеплопроводном и герметическом термосе. Вещество наружных слоев солнечной фотосферы — внешней светящейся оболочки светила—гораздо разреженнее и прозрачнее, чем наш земной воздух. А светится фотосфера потому, что уж очень она обширна. Непрозрачным и сверкающим слой ее становится при огромной толщине. Как же ведут себя атомы фотосферы, как сказывается в ней это сочетание прозрачности и непрозрачности? Из глубин светила к фотосферным атомам идет могучий лучистый поток. Его составляют главным образом фотоны очень высоких энергий — настолько высоких, что каждый поглощающий их атом лишается одного, а то и нескольких электронов. И вот летают взад-вперед свободные электроны и лишенные части электронов атомы—ионы. Но разлука их длится недолго. При первой возможности ион пополняет свой поредевший электронный отряд — втягивает на опустевшие орбиты встречные свободные электроны. Происходит, как говорят физики, рекомбинация ионов, Как всегда, переход физической системы в устойчивое состояние сопровождается выделением энергии. При воссоединении электронов с ионами испускаются фотоны, причем самые разнообразные. Ведь энергия излученного таким способом фотона в большой мере зависит от скорости относительного движения электрона и иона, а она меняется в широких пределах. Сильнее удар соединившихся частиц—выше энергия фотона; слабее удар— и возникает менее энергичный фотон. — 36 —
|