(поскольку при введении в схему расчетного тела большей массы, взаимное расположение остальных тел изменится). Вокруг каждого более массивного тела, образуется разряженная область, в физическом плане обеспеченная взаимным равенством сил. Данная динамика сходится с наблюдениями (чем более массивным является скопление небесных объектов, тем значительнее разряженная область это скопление объектов содержащая (пример – галактики и окружающие их области.) Из чего для системы отсчета связанной с Солнцем, расположение внешних тел (равной массы), будет силовым аналогом схемы отраженной на рис.№ 46: , а для системы отсчета связанной с телом, аналогом схемы № 47: Из чего очевидно наличие разряженной области вокруг Солнца (схема № 48 и № 49), а так же очевидно, что данная область (как и на ранее приводимой схеме) - смещена относительно пробного тела. Из приведенной схемы наглядно видно, что если рассматривать материю, заключенную в сферу с центром, совпадающим с центром опытного тела - наблюдается изменение количества масс, для правой и левой половин, приведенного к сфере, комплекса удаленных объектов. Это и есть изменение положения тел относительно избранной системы отсчета. Таким образом, мы наглядно убедились, что данное физическое явление физически обосновано и действительно имеет место быть в природе . На данном этапе стоит отметить: Расположение тел определяется геометрией разряженной области, а само силовое взаимодействие в количественном плане определяется не разряженной областью, а конкретными массами. Следовательно, в расчете мы должны учитывать не разряженную область, а именно массы. И из расчетного значения комплекса мы выводим не разряженную область, а линейное выражение конкретных масс. И если касательно области у нас может сложиться впечатление, что она окружает пробное тело, то ни одна из масс окружить тело не может, масса каждого тела находится относительно расчетного тела всегда с одной стороны (например, справа или слева в рамках телесного угла). То есть в силовом плане расположение масс, характеризующих разряженную область и массы самого расчетного тела, всегда соответствует схеме, в которой расчетное тело находится на удалении и не проникает внутрь какой либо отдельной массы. — 20 —
|