Введение в теорию S —матрицырассматриваемую главным образом с точки зрения приложений к описанию жизни физиков и прежде всего учитывающую характерные для таких систем статистические закономерности.Хорошо известно, что за последние годы S —матричная теория добилась существенных успехов в описании процессов рассеяния и взаимного превращения элементарных частиц. Это вдохновило нас на попытку применить её (быть может, не совсем строго) к изучению процессов, происходящих с физиками в течение всей их жизни. Особое внимание мы будем уделять системам, к которым можно применять статистику, т. е. системам, состоящим из большого числа объектов (в нашем случае физиков). Рассматриваемая нами система в момент времени t = —? представляет собой падающий поток физиков, которых можно считать почти свободными. Согласно двум решениям уравнений движения, этот поток можно разбить на две части: запаздывающие физики и опережающие физики (последние в основном из Принстона; отличаются они тем, что никогда не занимаются изучением истории рассматриваемого вопроса). В течение всей своей жизни физики вступают во взаимодействие с различными системами. Сила этого взаимодействия зависит как от искусства и напористости каждого отдельного физика, так и от того, каковы эти системы — консервативны или либеральны. К моменту времени t = ? поток физиков распадается на различные продукты реакции, полное число которых можно было бы в принципе получить из известных формул для S —матрицы, если бы её вид был в настоящее время известен. Продукты можно распределить по так называемым каналам реакции , из которых мы назовём здесь лишь некоторые: а) рассеянный физик; б) профессор; в) математик; г) инженер‑реакторостроитель; д) бюрократ. Из самых общих свойств S —матрицы, и особенно из её релятивистской инвариантности, можно заключить, что полная энергия, включая массу покоя, является интегралом движения физика по жизни. Поскольку известно, что с возрастом масса покоя возрастает, немедленно делаем вывод, что остальная энергия с течением времени падает. Для получения более точных результатов необходимо учесть взаимодействие физиков друг с другом. Для этой цели рассмотрим область конфигурационного пространства, так называемый «институт», где взаимодействие максимально. Эта область, в дальнейшем ради краткости именуемая КОВФ (конфигурационная область взаимодействия физиков), отделена от внешнего мира некоторым потенциальным барьером. Возможные состояния физиков в такой потенциальной яме можно задать четырьмя квантовыми числами, из которых первые три имеют общеизвестный смысл. Четвёртое же квантовое число, соответствующее двум возможным для физика состояниям сна и бодрствования, классического аналога не имеет, поскольку, согласно квантово‑механическому принципу дополнительности, ни одно из этих состояний без примеси другого наблюдено быть не может. Возможные значения этого квантового числа мы в дальнейшем будем обозначать символами «+» и «—» соответственно. — 88 —
|