В.А.Боков

ΦИЗИКА МАГНЕТИКОВ

АННОТАЦИЯ

В книге излагаются основные современные представления о различных магнетиках : диамагнетиках, парамагнетиках, ферромагнетиках и антиферромагнетиках. Рассмотрены причины и виды магнитного упорядочения – ферромагнитного, антиферромагнитного и ферримагнитного, приведены основы магнитной симметрии. Значительное внимание уделено магнитным материалам - ферритам – шпинелям, гранитам, гексаферритам, а также аморфным магнетикам и спиновым стеклам. Рассмотрены явления магнитной анизотропии, магнитострикции, слабого ферромагнетизма, а также пьезомагнитный и магнитоэлектрические эффекты. Большое внимание уделено доменной структуре и современным представлениям о магнитной структуре доменных границ ферро- и ферримагнетиков и их динамики, а также динамическим эффектам процесса намагничивания и формированию петель гистерезиса.

Изложены основные представления о различных магнитных резонансах в магнитоупорядоченных кристаллах и спиновых волнах – магнитостатических и обменных, а также параметрическом возбуждении спиновых волн и процессах релаксации.

Книга предназначена для студентов и аспирантов, специализируеющихся в области физики твердого тела и твердотельной электроники.

Предисловие	5
Глава 1	
Атомный магнетизм	7
§ 1.1. Свободные атомы	7
§ 1.2. Влияние кристаллического поля	18
Глава 2	
Лиамагнетизм и парамагнетизм	28
8 2 1 Лиамагнетизм электронной оболочки атомов	28
8 2.2. Парамагнетизм	
2.2.1. Парамагнетизм свободных атомов	
2.2.2. Пара – и лиамагнетизм электронов проволимости	
Глава 3	
	46
8 3.1. Теория молекулярного поля ферромагнетиков	46
8.3.2. Термолицамицеская теория ферромагнетиков	
9 5.2. Термодинамическая теория ферроманитного фазового перехода	50
833 Обмениое разимолейстрие (Молекина волорода и молени	
у 5.5. Обменное взаимоденствие (молекула водорода и модель Гайзенберга)	52
8 3 Д. Обменшое взаимолействие в 3 д.метанцах	<i>32</i> 58
§ 3.5. Обменное взаимодействие в останалиях релину земени	
§ 5.5. Обменное взаимодеиствие в металлах редких земель	01
§ 5.0. ROCBEHHOE OOMEHHOE B3AUMODEUCIBUE	00
2 7.1. Таория монокулярного ноня	12 75
2.7.2. Теория молекулярного поля	·····/5 90
5.7.2. Гермодинамическая теория	80 81
§ 5.8. Магнигная симметрия	04 00
§ 5.9. Ферримагнетики	00
2.0.2. Тоория. Нооня	00
2.0.2. Форрити песля	95
2.0.4. Гажаарананы фарриты	97
5.9.4. Гексагональные ферриты	102
§ 3.10. Перовскиты манганиты	102
§ 3.12. Аморфина мариотичи и аринорна отокна	100
§ 5.12. Аморфные магнетики и спиновые стекла	107
I JIABA 4	110
Магнитная анизотропия и магнитострикция	116
§ 4.1. Магнитная анизотропия	116
§ 4.2. Магнитострикция	122
§ 4.3. Слабыи ферромагнетизм	127
§ 4.4. Пьезомагнитный и магнитоэлектрические эффекты	134
Глава 5	
Доменная структура и процессы намагничивания	137
§ 5.1. Причины распадения на домены и доменные границы	137
§ 5.2. Энергия и структура статических доменных границ	143
§ 5.3. Доменная структура одноосных ферромагнетиков	160
§ 5.4. Движение доменной стенки	165
5.4.1. Уравнение Ландау и Лифшица	166
5.4.2. Теоретическое рассмотрение движения одномерной	
стенки	168
5.4.3. Гиротропная сила	173

ПРЕДИСЛОВИЕ

Предлагаемая книга является последовательным изложением курса физики магнетиков, как непосредственного продолжения общего курса физики твердого тела, и посвящена более подробному изложению одного из его разделов. Курс входит в перечень дисциплин Государственного образовательного стандарта высшего профессионального образования по направлению 553.100 – Техническая физика по дисциплинам п.п. 553.101 – Прикладная физика твердого тела : магнитные материалы, спиновые стекла.

Целью книги является ознакомление студентов с : 1) физическими источниками магнетизма; 2) физическими причинами и видами магнитного упорядочения в твердых телах ; 3) магнитными материалами ; 4) магнитными свойствами магнетиков в том числе с магнитными резонансами и спиновыми волнами в магнитоупорядоченных кристаллах. Она предназначена для студентов и аспирантов, знакомых с основами электродинамики и квантовой механики и специализирующихся в области физики твердого тела и твердотельной электроники. Этим она отличается от немногочисленных курсов по магнетизму , изданных на русском языке и предназначенных главным образом для студентов, специализирующихся в области магнетизма.

Так книга Г.С.Кринчика [1] предназначена для студентов физических факультетов университетов, специализирующихся по магнетизму. Поэтому в книге большое внимание уделено ряду разделов теории твердого тела, касающихся магнетизма. В тоже время даже в последнее издание не вошли новейшие достижения в области структуры и динамики доменных границ. Японский курс С.Тикадзуми [2], изданный на русском языке, охватывает большой круг вопросов, связанных с магнетизмом, от магнитных свойств атомов до методик измерений и магнитных свойств конкретных материалов. Оба тома, особенно второй, занимают среднее положение между учебным пособием и монографией, поэтому больше предназначены для студентов и аспирантов, специализирующихся по магнетизму. Следует отметить также небольшую книгу Г.А.Смоленского и В.В.Леманова "Ферриты и ИХ техническое применение" [3], которая представляет очень краткое изложение физики ферритов и их технического применения и поэтому никак не может считаться общим курсом физики магнитных явлений. .

Отличие предлагаемого курса не только в компактности, но в том, что в нем большое внимание уделено тем магнитным материалам и свойствам, которые нашли наибольшее применение в современной технике. Это различные ферриты, их доменная структура, процессы движения доменных границ и вообще процессы перемагничивания, а также ферромагнитный резонанс и спиновые волны. В книге использована гауссова система единиц, как наиболее удобная в магнетизме. Автор старался, по возможности, приводить выводы основных зависимостей за исключением слишком громоздких вычислений. В последнем случае при желании читатель может с ними познакомиться в специальных монографиях, которые вошли в список дополнительной литературы, приведенной в конце книги. Что касается экспериментальных данных, то они ограничены наиболее типичными зависимостями сведенными несколько таблиц классическими И В характеристиками наиболее типичных магнетиков. Ограничено и число литературных ссылок. Подробный перечень литературы по отдельным разделам читатель может найти в специальных монографиях. Автор не включил в книгу методики измерений и магнитооптику, так как считал, что это самостоятельные дисциплины, которым должны быть посвящены отдельные книги.

В основу книги положен курс физики магнетиков, который автор читает на кафедре физики твердого тела физико-технического факультета Санкт-Петербургского государственного политехнического университета.

Автор очень благодарен своим коллегам по ФТИ им.А.Ф.Иоффе РАН В.В.Волкову, Е.И.Головенчицу, В.А.Саниной и О.А.Чивилевой, взявших на себя труд прочитать рукопись и сделать ценные замечания.

7

ГЛАВА 1

Атомный магнетизм

Магнетиками называются все тела, способные намагничиваться, т.е. тела присутствие которых либо видоизменяет, либо создает магнитное поле. Основы магнитных свойств магнетиков заложены в строении электронных оболочек атомов, входящих в вещество, поэтому прежде всего рассмотрим строение электронных оболочек при этом приведем только те сведения, которые необходимы для понимания макроскопических магнитных свойств веществ.

§ 1.1. Свободные атомы

Спин и собственный магнитный момент электрона

Электрон обладает собственным моментом количества движения - спином ps

$$p_s = \eta \sqrt{s(s+1)}, \tag{1.1}$$

где $s = \frac{1}{2}$ и $\eta = h/2\pi$. Благодаря спину электрон обладает и собственным магнитным моментом - μ_s

$$\mu_{s} = 2\mu_{B}\sqrt{s(s+1)} = \frac{2\mu_{B}}{\eta}p_{s}, \qquad (1.2)$$

где $\mu_B = \frac{e\eta}{2mc} = 0,927 \cdot 10^{-20} \, \text{эр} c / \Gamma c$ и называется магнетоном Бора

Находясь в электронной оболочке атома, электрон обладает орбитальным моментом количества движения p_l , величина которого квантуется

$$p_{\lambda} = \eta \sqrt{\lambda(\lambda + 1)}, \qquad (1.3)$$

где *l* =0,1,2,3,4,..... (n - 1) и n - главное квантовое число.

s p d f g

Состояния электрона с различными орбитальными квантовыми числами обозначаются соответствующими малыми латинскими буквами s, p, d, f, g и т.д. Орбитальному движению электрона соответствует магнитный момент

$$\mu_{\lambda} = \mu_{B} \sqrt{\lambda(\lambda+1)} = \frac{\mu_{B}}{\eta} p_{\lambda}.$$
(1.4)

Так как заряд электрона отрицательный, магнитные моменты μ_s и μ_l направлены против соответствующих моментов количества движения и , если последние измерять в единицах η , то

$$\boldsymbol{\mu}_{s} = -2\boldsymbol{\mu}_{\mathrm{B}} \boldsymbol{p}_{\mathrm{s}} \tag{1.5}$$

$$\boldsymbol{\mu}_l = - \boldsymbol{\mu}_{\mathrm{B}} \boldsymbol{p}_l \,. \tag{1.6}$$

Если электрон находится в s - состоянии (l = 0), то его орбитальный момент количества движения и магнитный момент равны нулю. В этом случае электрон обладает только спином и спиновым магнитным моментом. Для гиромагнитных отношений, т.е. отношений магнитных моментов к соответствующим моментам количества движения имеем

$$\gamma_s = \frac{2\mu_B}{\eta} \quad \text{if} \quad \gamma_\lambda = \frac{\mu_B}{\eta}, \tag{1.7}$$

т.е. они отличаются в два раза.

Пространственное квантование

Наличие магнитного поля приводит к появлению оси пространственного квантования, относительно которой орбитальный момент количества движения и спин могут иметь только ограниченное число ориентаций (рис.1).

Рис. 1. Пространственное квантование орбитального момента количества движения и спина электрона (все в единицах \hbar).

Проекции \mathbf{p}_l в единицах η называются орбитальными магнитными квантовыми числами и могут принимать значения $\mathbf{m}_l = -l, -(l-1), ..., l$, всего 2l + 1 значений. Спин \mathbf{p}_s может иметь только две ориентации и соответственно спиновое магнитное квантовое число имеет два возможных значения $\mathbf{m}_s = \pm \frac{1}{2}$. Таким образом состояние электрона в атоме определяется 4-мя квантовыми числами n, l, \mathbf{m}_l и \mathbf{m}_s .

Заполнение электронных оболочек

Рассмотрим теперь как заполняются электронные оболочки атома. Если рассматривать один электрон, вращающийся вокруг ядра, то возможным его состояниям отвечают энергетические уровни, каждому из которых соответствует определенный набор 4-х квантовых чисел. Согласно принципу Паули на каждом энергетическом уровне может находиться только два электрона с противоположно направленными спинами. В первом приближении без учета взаимодействия между электронами можно считать, что заполнение электронных оболочек происходит так, что электроны последовательно занимают эти уровни энергии, начиная с самого нижнего, соответствующего n = 1 и l = 0. На этом уровне могут находиться два электрона с $m_s = \pm \frac{1}{2}$. Эти два электрона образуют первую оболочку, которая обозначается как 1s², Здесь первая цифра означает главное квантовое число, s - показывает, что l = 0, и индекс 2 означает, что в оболочке находится два электрона. Далее заполняется следующая оболочка, соответствующая n = 2. Меньшей энергии соответствует оболочка с меньшим значением l, т.е. l = 0. Эту оболочку можно записать как $2s^2$. Следующей оболочкой является 2p с n = 2 и l = 1. В ней может находиться 6 электронов, поскольку $m_l = -1,0, +1$ и $m_s = \pm \frac{1}{2}$. Дальнейшее заполнение электронных оболочек иллюстрируется табл.1.1

	Схема	заполнен	ия элект	ронных	оболочек
l					
n	S	р	d	f	g
	0	1	2	3	4
1	2				
2	2	6			
3	2	6	10		
4	2	6	10	14	
5	2	6	10	14	18

Таблица 1.1

. Полностью заполненные оболочки называются замкнутыми. Рассмотренная последовательность заполнения имела бы место, если бы не было взаимодействия между электронами. Из-за взаимодействия между электронами состояния с малыми n и большими l могут оказаться энергетически менее выгодными, чем с большими n, но меньшими l. Поэтому нормальное заполнение оболочек имеет место только до аргона, у которого электронная конфигурация $1s^22s^22p^63s^23p^6$. Далее у калия электрон попадает не в 3d, а в 4s оболочку и, соответственно, электронная конфигурация у К $3s^23p^64s^1$, далее у Ca $3s^23p^64s^2$ и только начиная со Sc заполняется 3d - оболочка. Ее заполнение заканчивается на Cu, имеющей конфигурацию $3s^23p^63d^{10}4s^1$. Отстают в заполнении и другие d оболочки, а также f - оболочки, которые оказываются внутренними. Элементы, у которых происходит заполнение внутренних оболочек, называются переходными. Имеются следующие группы переходных элементов :

Группа железа (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) - 1s²2s²2p⁶3s²3p⁶3d^x4s¹⁻². Группа палладия (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd) -3d¹⁰4s²4p⁶4d^x5s¹⁻². Группа платины (La , Lu , Hf , Ta , W , Re , Os , Ir) -4d¹⁰4f¹⁴5s²5p⁶5d^x6s¹⁻²,

кроме La, у которого $4f^0$.

Группа редкоземельных элементов (Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,

Er, Tm, Yb) - $4d^{10}4f^{x}5s^{2}5p^{6}5d^{0-1}6s^{2}$.

Группа урана (Ac, Th, Pa, U) -4f¹⁴5s²5p⁶5d¹⁰5f^{*}6s²6p⁶6d¹⁻²7s².

Особенно отстают в заполнении f - оболочки, которые оказываются сильно экранированными внешними оболочками.

Спин, орбитальный и полный момент количества движения атома

Для общей характеристики многоэлектронного атома необходимы суммарные данные о всей совокупности электронов. Если электронная оболочка замкнута, то, поскольку использованы все магнитные квантовые числа, как орбитальные, так и спиновые, сумма орбитальных моментов и сумма спинов равны нулю. Таким образом для определения электронного состояния атома необходимо рассмотреть только не полностью заполненные оболочки. Обычно в атоме имеет место так называемая рассель-саундеровская связь и отдельно складываются все орбитальные моменты количества движения и все спины электронов. Это связано с тем, что спин-орбитальное взаимодействие слабое и оно подавляется более сильным взаимодействием, приводящим к рассель-саундеровской связи.

Для суммарных орбитального (L) и спинового (S) моментов имеем :

$$\mathbf{L} = \sum_{i} \mathbf{p}_{l_i}; \qquad \mathbf{S} = \sum_{i} \mathbf{p}_{s_i}. \qquad (1.8)$$

Для проекции на ось квантования z имеем :

$$L_{z} = \eta \sum m_{li} = \eta M_{L} ; \quad M_{L} = -L , -L+1 , \dots L .$$
(1.9)

$$S_z = \eta \sum m_{si} = \eta M_S$$
; $M_S = -S$, $-S + 1$,..... S . (1.10)

Таким образом L и S имеют смысл максимальных проекций на ось квантования при данных L и S. Собственные значения орбитального и спинового моментов количества движения равны

$$|\mathbf{L}| = \eta \sqrt{L(L+1)}$$
 \mathbf{H} $|\mathbf{S}| = \eta \sqrt{S(S+1)}.$ (1.11)

Расстояние между уровнями энергий, соответствующих разным величинам L и S, составляет 10^4 - 10^5 см⁻¹. Состояния с различными L обозначаются большими латинскими буквами

$$L = 0, 1, 2, 3, \dots$$

S P D F.....

Благодаря спин-орбитальному взаимодействию - вектора L и S оказываются связанными и прецессирующими вокруг одной и той же оси (рис.2).

Рис.2. Образование полного момента количества движения J в результате сложения векторов L и S, которые прецессируют вокруг вектора J. В свою очередь вектор J прецессирует вокруг оси квантования z (H).

Энергия спин-орбитального взаимодействия приближенно равна

$$W_{LS} = \lambda \mathbf{LS}, \tag{1.12}$$

где λ называется константой спин-орбитальной связи. Складываясь, вектора L и S образуют полный момент количества движения J. Таким образом

$$\mathbf{J} = \mathbf{L} + \mathbf{S},\tag{1.13}$$

при этом

$$|\mathbf{J}| = \eta \sqrt{J(J+1)},\tag{1.14}$$

где J квантовое число полного момента количества движения и

$$J = L+S$$
, $L+S-1$,L-S,

всего может принимать 2S + 1 значений, если L > S. Если же L < S, то

$$J = S+L, S+L-1, \dots S-L$$

и может принимать 2L + 1 значений.

Совокупность уровней энергии, соответствующих различным значениям J, т.е. разным ориентациям L и S относительно друг друга при одних и тех же величинах L и S, называется мультиплетом или термом, а число возможных уровней мультиплетностью. Расстояния между уровнями в мультиплете не велико, так как определяются изменением энергии слабого спин-орбитального взаимодействия при изменении взаимной ориентации L и S, и составляет ${\sim}10^2\,{\rm cm}^{-1}$ для 3d - ионов и ${\sim}10^3\,{\rm cm}^{-1}$ для 4f - ионов.

Проекции Ј на ось квантования в единицах η имеют дискретные значения

$$J_{z} = M_{J}\eta$$
, где $M_{J} = -J, -J+1, \dots, J$. (1.15)

Для состояния атома, соответствующего данному терму, принято следующее обозначение, например, $3^2 P_{\frac{1}{2}}$. Это означает, что n = 3, L = 1, нижний индекс показывает, что J = S, а верхний указывает мультиплетность 2S+1=2.

Магнитный момент свободного атома

Поскольку при построении оболочки складываются орбитальные моменты количества движения и спины, то складываются и соответствующие им магнитные моменты, образуя суммарный орбитальный (μ_L) и спиновый (μ_S) магнитные моменты. Будем далее считать, как это принято, что моменты количества движения измеряются в единицах η . Тогда, принимая во внимание (1.6) и (1.8), получим

$$\boldsymbol{\mu}_{\mathrm{L}} = \sum \boldsymbol{\mu}_{li} = -\boldsymbol{\mu}_{\mathrm{B}} \sum \mathbf{p}_{li} = -\boldsymbol{\mu}_{\mathrm{B}} \mathbf{L} , \qquad (1.16)$$

$$\boldsymbol{\mu}_{\mathrm{S}} = \sum \boldsymbol{\mu}_{\mathrm{S}i} = -2\boldsymbol{\mu}_{\mathrm{B}} \sum \mathbf{p}_{\mathrm{S}i} = -2\boldsymbol{\mu}_{\mathrm{B}} \mathbf{S} \ . \tag{1.17}$$

Магнитный момент атома μ равен сумме μ_L и μ_S

$$\mu = \mu_{\rm L} + \mu_{\rm S} = -\mu_{\rm B} (\,{\rm L} + 2{\rm S}\,)\,. \tag{1.18}$$

Очевидно, что полностью заполненные оболочки не вносят вклад в магнитный момент атома. Сложение векторов L, S и μ_L и μ_S приведено на рис.3.

Рис. 3. Сложение векторов S и L и соответствующих им магнитных моментов μ_S и μ_L с образованием суммарного магнитного момента μ .

Из рис.3 видно, что из-за того, что γ_s в два раза больше чем γ_l , μ_L и **J** не коллинеарны. Вся связка векторов прецессирует вокруг **J** и определенной является только проекция μ на направление **J**, которую мы обозначим как μ_J . Для μ_J можно получить следующую формулу

$$\mu_J = g_J \mu_B \sqrt{J(J+1)}, \qquad (1.19)$$

где

$$g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}.$$
(1.20)

 g_J - называется фактором Ланде. При S = 0 $g_J = 1$, а при L = 0 $g_J = 2$. Поскольку для J имеет место пространственное квантование, то квантуется и проекция μ_J , которую мы обозначим как μ_H . Очевидно, что

$$\mu_{\rm H} = g_J \mu_{\rm B} M_J$$
, rge $M_J = -J, -J+1, \dots, J$. (1.21)

Основное состояние атома. Правила Хунда

У атомов, имеющих незаполненные электронные оболочки, в общем случае возможен целый ряд состояний, зависящих от величин L, S и J. В веществе большинство атомов находится в наинизшем энергетическом состоянии поэтому определение его представляет особый интерес. Этот наинизший или основной уровень определяется следующими тремя правилами Хунда:

- 1. Основным является уровень с наибольшим при данной электронной конфигурации полным спином S.
- 2. При наибольшем S основному состоянию соответствует наибольший орбитальный момент L.
- При заполнении первой половины оболочки J минимален, т.е. L и S атипараллельны (J = L S), константа спин-орбитальной связи λ>0 и энергия в терме увеличивается с ростом J (правильные мультиплеты). При заполнении второй половины оболочки J максимален, т.е. L и S параллельны (J = L + S), λ<0 и энергия в терме уменьшается с ростом J (обращенные мультиплеты).

Таким образом третье правило Хунда определяет основной уровень терма.

S

J

Для иллюстрации правил Хунда рассмотрим сначала заполнение 2р - оболочки, которое схематически показано на рис.4а, где каждая из 3-х клеточек горизонтальных рядов соответствует одному из возможных значений орбитального квантового числа $m_l = +1$, 0, -1, а стрелками показано направление спинов. На рис.4б приведены соответствующие приведенному заполнению 2р -оболочки величины L, S и J для последовательности атомов от Be до Ne. Направления спинов, соответствующие первому правилу Хунда, для переходных элементов группы железа приведены в табл.1.2. На рис.5 для 2-х валентных ионов этих элементов даны величины S, L и J, а на рис.6 для 3-х валентных ионов редких земель. Заметим, что в группе железа Mn^{2+} находится в S-состоянии, т.е. L = 0. Имеющий ту же электронную конфигурацию ион Fe³⁺ так же находится в S-состоянии. В ряду 3-х валентных ионов редких земель в S-состоянии находится Gd³⁺

Рис.6. S, L и J для трехвалентных ионов редких земель.

.

Рис.5. S. L и J для двухвалентных ионов группы железа.

Таблица 1.2

Заполнение 3d - и 4s - оболочек с учетом ориентации спинов

	3d					4s
K						\uparrow
Ca						$\uparrow\downarrow$
Sc	\uparrow					$\uparrow\downarrow$
Ti	\uparrow	\uparrow				$\uparrow\downarrow$
V	\uparrow	\uparrow	\uparrow			$\uparrow\downarrow$
Cr	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
Mn	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	$\uparrow\downarrow$
Fe	$\uparrow\downarrow$	\uparrow	\uparrow	\uparrow	\uparrow	$\uparrow\downarrow$
Co	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow	\uparrow	$\uparrow\downarrow$
Ni	$\uparrow \downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow	\uparrow	$\uparrow\downarrow$
Cu	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow
Zn	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$

§ 1.2. Влияние кристаллического поля

Образуя кристалл, атомы уже не находятся в свободном состоянии и их внешние оболочки существенно изменяются. Оставляя пока в стороне металлы, у которых магнитные свойства во многом определяются электронами проводимости, рассмотрим ситуацию с изменением электронных оболочек атомов, составляющих кристаллы неметаллов. При ионной связи атом металла отдает один или насколько электронов со своей одной или двух внешних оболочек и становится анионом. Если атом не относится к переходным элементам, то у аниона все электроные оболочки оказываются замкнутыми. Примером могут служить ионы K^+ , Ca^{2+} , Sc^{3+} , Ti^{4+} , Cu^+ , Zn^{2+} (см. табл.1.2). Металлоиды наоборот захватывают электроны анионов, становясь катионами, при этом полностью застраивается незамкнутая оболочка, например, у F^- и O^{2-} оказывается полностью заполненной 2р-оболочка, а у F^- Зр-оболочка. Таким образом в ионном кристалле магнитным моментом могут обладать только ионы переходных элементов, так как только они могут иметь не полностью заполненные оболочки.

В случае ковалентной связи благодаря перекрытию электронных оболочек соседних атомов происходит "обобществление" их внешних электронов с образованием гибридных орбиталей, на которых находятся два спаренных электрона (т.е. электроны с антипараллельными спинами). Таким образом и в случае ковалентной связи атомы могут обладать магнитным моментом только если после образования ковалентной связи остается не полностью заполненной одна из оболочек, что возможно только для переходных элементов. У большинства неорганических веществ химическую связь нельзя считать ни чисто ионной, ни чисто ковалентной, но условие наличия магнитных моментов и в этом случае все то же, т.е. не полностью заполненная d- или f-оболочка. Таким образом носителями магнитных моментов в кристалле являются локализованные d- и f-электроны. Изменение внешней электронной оболочки изза образования химической связи в сочетании с действием электрических полей, создаваемых окружающими анион катионами, может привести к частичному или даже полному снятию вырождения по пространственному распределению электронной плотности.

В случае чисто ионной связи действие окружающих катион анионов, которые обычно называются лигандами, сводится к действию создаваемого ими электрического поля. Это поле получило название кристаллического поля. Теория кристаллического поля была развита Бете и Ван Флеком. В дальнейшем оказалось, что влияние ковалентных связей на состояние катиона с точки зрения локальной симметрии поля, которая может не совпадать с симметрией кристалла, эквивалентно действию кристаллического поля. Поэтому обычно, когда речь идет о влиянии лигандов, то об их воздействии говорят как о действии кристаллического поля, понимая под этим результат влияния обеих факторов, при этом увеличение ковалентности в химической связи приводит к усилению кристаллического поля.

По силе воздействия кристаллического поля принято различать следующие случаи :

1. Слабое поле - редкоземельные ионы с сильно экранированной 4f-оболочкой.

2. Среднее поле - ионы с 3d-оболочкой.

3. Сильное поле - ионы с 4d - 5d-оболочками, входящие в ковалентные комплексы.

В случае слабого кристаллического поля оно слабее спин-орбитального взаимодействия и J остается "хорошим" квантовым числом, т.е. связь Расселя-Саундерса остается. Действие кристаллического поля приводит к частичному или полному снятию (2J + 1) кратного вырождения уровня, которое было у свободного иона.

При среднем поле действие кристаллического поля сильнее спин-орбитальной связи, поэтому понятие полного момента J теряет смысл. Что касается L и S, то они своего значения не теряют, но если спиновые моменты остаются свободными, то, как увидим ниже, пространственное вырождение орбитального момента частично или полностью снимается. Что касается спин-орбитального взаимодействия, то оно может оказывать заметное влияние, но уже во втором порядке теории возмущения.

В случае сильного кристаллического поля это поле сильнее уже не только спин-орбитального взаимодействия, но и внутриатомного электростатического взаимодействия между электронами. Это приводит к нарушению правил Хунда. Следует отметить, что четкой границы между кристаллическими полями различной силы нет.

Рассмотрим теперь действие среднего и сильного полей на примере 3d-ионов . Волновая функция электрона, находящегося в атоме на стационарной орбите, должна удовлетворять уравнению Шредингера

$$\vec{H}\psi = E\psi, \tag{1.22}$$

где гамильтониан

$$\vec{H} = -\frac{\eta^2}{2m}\Delta + U(r).$$
(1.23)

Здесь U(r) - потенциальная энергия и

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Решением является функция

$$\psi_{nlm} = R_{nl}(r)\Theta_{lm}(\theta)\Phi_m(\varphi).$$
(1.24)

Индексы n, l и m обозначают соответствующие квантовые числа. Для нашего рассмотрения особенно важны зависимости от полярного θ и азимутального ϕ углов.

$$\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}.$$
 (1.25)

Функции $\Theta_{lm}(\theta)$ выражаются через присоединенные полиномы Лежандра и для l=2 имеют следующие зависимости от θ :

m = 0
$$\Theta_{20} \propto 3\cos^2 \theta - 1$$
,

$$m = \pm 1 \qquad \Theta_{2\pm 1} \propto \sin \theta \cos \theta, \qquad (1.26)$$
$$m = \pm 2 \qquad \Theta_{2\pm 2} \propto \sin^2 \theta.$$

Если рассматривать ψ только как функцию г и θ , то, как видно из (1.24), (1.25) и (1.26), ψ определяется квантовыми числами n, *l* и |m|. Вид этих функций представлен на рис.7, где за ось квантования принята ось z.

Рис. 7. Угловые зависимости волновых 3d-функций для трех значений | m_l | [2].

Видно, что различной ориентации орбитального момента, т.е. разным величинам |m|, соответствует разное распределение электронной плотности. Изменение знака m сводится просто к перемене направления вращения.

Рассмотрим теперь как влияет на распределение электронной плотности 3dиона кристаллическое поле в том случае, если ион находится в октаэдрическом окружении лигандов (рис.8а).

Рис. 8 а) Октаэдрическое окружение 3d - катиона.
3d-катион расположен в центре октаэдра в вершинах которого находятся анионы-лиганды, например, O².
б) Схематическое изображение волновых функций d_{z²}, d_{x²-y²}, d_{xz}, d_{yz}, d_{xy}.

21

г) всегда вещественное, а $\psi_{n/m}$ комплексное кроме случая m = 0. Удобнее, когда $\psi_{n/m}$ вещественное, поэтому, пользуясь тем, что уравнение Шредингера (1.22) линейное и любая линейная комбинация решений также является решением, можно в качестве решения взять линейную комбинацию функций, соответствующих одинаковой величине |m|, т.е. при l = 2 это m = 0, ±1, ±2. Для рассмотрения влияния кристаллического поля удобнее эти функции записать в прямоугольных координатах. Таких функций пять и они имеют вид

$$d_{z^{2}} \equiv \psi_{0} \propto \frac{(3z^{2} - r^{2})}{r^{2}} = \frac{(z^{2} - x^{2}) + (z^{2} - y^{2})}{r^{2}},$$

$$d_{z^{2} - y^{2}} \equiv \frac{(\psi_{2} + \psi_{-2})}{\sqrt{2}} \propto \frac{(x^{2} - y^{2})}{r^{2}},$$

$$d_{xy} \equiv \frac{(\psi_{2} - \psi_{-2})}{i\sqrt{2}} \propto \frac{xy}{r^{2}},$$

$$d_{xz} \equiv \frac{(\psi_{1} + \psi_{-1})}{\sqrt{2}} \propto \frac{xz}{r^{2}},$$

$$d_{yz} \equiv \frac{(\psi_{1} - \psi_{-1})}{i\sqrt{2}} \propto \frac{yz}{r^{2}}.$$
(1.27)

Схематическое изображение этих функций приведено на рис.8б. Очевидно, что для свободного иона все эти состояния вырождены. Поместим теперь ион в центр октаэдра, при этом оси 4-го порядка октаэдра (рис.8а) должны совпадать с осями координат волновых функций (1.27). Такой выбор вполне естественнен, так как распределение электронной плотности должно удовлетворять операциям симметрии октаэдра. Таким образом 3d-орбиты располагаются относительно лигандов так, как это показано на рис.8б. Из-за отталкивания отрицательно заряженными лигандами электронов на 3d-орбитах вырождение этих орбит частично снимается. При этом лепесткам орбит энергетически наиболее выгодно располагаться между анионами чему соответствуют орбиты d_{xy} , d_{xz} и d_{yz} , которые в силу равноправности осей вырождены. Две оставшиеся орбиты $(d_{z^2}, d_{x^2-y^2})$ энергетически менее выгодны, но также вырождены. Таким образом пятикратно вырожденный уровень для свободного иона расщепляется на два один 3-х кратно и второй 2-х кратно вырожденные. Приняты следующие обозначения орбит :

 ${\rm e_g}$ - по Милликену $d_{z^2}, d_{x^2-y^2}$

22

dy - по Бете

$$t_{2g}$$
 - по Милликену
 d_{xy} , d_{xy} , d_{yz}
 $d\varepsilon$ - по Бете .

Расстояние между t_{2g} и e_g уровнями обозначаются как 10Dq или Δ и зависит от вида катиона, его заряда и геометрической конфигурации электронных оболочек лигандов. Если принять положение нерасщепленного уровня за ноль и энергии t_{2g} и e_g уровней обозначить как $E_{t_{2g}}, E_{e_g}$, то воспользовавшись правилом положения центра тяжести, имеем

$$3E_{t_{2\sigma}} + 2E_{e_{\sigma}} = 0, (1.28)$$

$$E_{e_g} - E_{t_{2g}} = 10Dq. \tag{1.29}$$

Решая совместно (1.28) и (1.29), получим E = 6Da

$$E_{e_g} = 0Dq,$$
$$E_{t_{2g}} = -4Dq.$$

Понижение симметрии поля приводит к дальнейшему снятию вырождения, что схематически показано на рис.9.

Рис. 9. Расщепление уровня d-электрона в кристаллических полях различной симметрии.

Если 3d – ион находится в тетраэдрическом окружении лигандов , то положения уровней инвертируются , т.е. нижним уровнем является e_g , а верхним t_{2g} .

В кристаллическом поле средней силы, как уже отмечалось, первое правило Хунда (т.е. максимальный спин) выполняется и поэтому говорят, что атом находится в высокоспиновом состоянии. Для этого случая расщепление уровня при октаэдрическом окружении с учетом ориентации спинов схематически представлено на рис.10.

Рис.10. Расщепление уровней d- оболочки за счет внутриатомного электростатического взаимодействия между электронами и кубического кристаллического поля средней силы. (+) и (-) означают противоположные ориентации спинов.

Последовательное заполнение расщепленных уровней электронами приведено на рис.11.

Рис.11. Распределение 3d- электронов по t_{2g} и е_g уровням при высокоспиновом состоянии. ионов группы железа.

Расщепление за счет электростатического взаимодействия между электронами отражено направлением стрелок (спинов). Сначала заполняются t_{2g} и e_g уровни с одним направлением спинов, а затем уже с противоположным.

Рис.12. Расщепление уровней d - оболочки в результате электростатического взаимодействия между электронами и сильного кристаллического поля.
 (+) и (-) означают противоположные ориентации спинов.

Рис.13. Распределение 3d-электронов по t_{2g} и е_g уровням при низкоспиновом состоянии.

Для сильного кристаллического поля расщепление показано на рис.12 и на рис.13 приведено соответствующее распределение электронов по t_{2g} и e_g уровням. Видно

, что правило Хунда нарушается. После заполнения наинизшего t_{2g} уровня заполняется также t_{2g} уровень, но с противоположным направлением спина электрона. Такие состояния ионов называются низкоспиновыми и валентность в этом случае обозначается римскими цифрами, например, Co^{""}, Ni^{""}. Заметим, что Co^{""} не обладает магнитным моментом.

Теоретический анализ влияния кристаллического поля обычно начинается с теоретико-группового рассмотрения, которое только из соображений симметрии позволяет получить классификацию уровней, их расщепление при понижении симметрии, однако не может предсказать порядок следования уровней и величины расщеплений.

Следует отметить, что существует фундаментальная теорема Крамерса, согласно которой при нечетном числе электронов кристаллическим полем вырождение полностью не снимается. Остается двукратное вырождение по спину, которое может быть снято только магнитным полем.

Рассмотрим теперь как влияет кубическое кристаллическое поле октаэдра на магнитные свойства 3d-иона в высокоспиновом состоянии и начнем с одноэлектронного приближения. Для свободного иона все функции (1.27) вырождены. Можно брать их любую линейную комбинацию и поэтому возможно любое значение l_z из дискретного набора $m_l = -2$, -1, 0, 1, 2. В кристаллическом поле вырождение функций (1.27) частично снимается, они распадаются на две группы. Теперь уже можно комбинировать только в пределах группы, т.е. брать комбинации t_{2g} -орбит и отдельно e_g -орбит. В первом случае комбинации $d_{xz} \pm id_{yz}$ приведут к функции с $< l_z > = \pm 1$. Все другие комбинации d_{xz} , d_{yz} и d_{xy} дадут $< l_z > = 0$, так как функции ψ_{+1} и ψ_{-1} , а также ψ_{+2} и ψ_{-2} будут входить с одинаковым статистическим весом. Таким образом поведение электрона на t_{2g} уровне соответствует эффективному моменту l'=1 с проекциями $m_{l'} = +1,0,-1$, т.е. эквивалентно р-электрону. Что касается электронов на e_g -уровне, то, очевидно, что любые комбинации d_{z^2} и $d_{x^2-v^2}$ функций приведут к $< l_z >= 0$. Следовательно

, в создании среднего отличного от нуля орбитального момента участвуют только электроны на t_{2g} - уровне. Посмотрим, что происходит при последовательном заполнении 3d-оболочки (см. рис.11). Для d¹ - конфигурации орбитальное вырождение равно трем, как это уже отмечалось. Для d² орбитальное вырождение также трехкратное (дырка может иметь три значения $m_{l'}$). Конфигурации d³ соответствует орбитальный синглет и орбитальный момент заморожен (все три значения $m_{l'}$ использованы). Конфигурации d⁴ соответствует орбитальный момент все равно заморожен, так как четвертый электрон находится на eg - уровне. При конфигурации d⁵ ион находится в S-состоянии и L = 0. При заполнении второй половины 3d-оболочки т.е. верхних t_{2g} и eg уровней последовательность изменения орбитального вырождения такая же как и при заполнении первой половины. Таким образом орбитальный момент не заморожен только в случае трехкратного орбитального вырождения, что соответствует конфигурациям d¹, d², d⁶ и d⁷. Для остальных конфигураций орбитальный момент заморожен.

Энергия спин-орбитального взаимодействия W_{LS} отрицательная и выгоднее чтобы орбитальный момент был. Поэтому, если атом не находится в S-состоянии, имеется некая конкуренция между кристаллическим полем, стремящемся заморозить орбитальный момент, и спин-орбитальным взаимодействием, для которого орбитальный момент необходим и которое поэтому препятствует полному замораживанию орбитального момента. В

результате орбитальный момент может оказаться не совсем замороженным и давать какой-то вклад в магнитный момент атома.

Диамагнетизм и парамагнетизм

§ 2.1. Диамагнетизм электронной оболочки атомов

Действие магнитного поля на атом, если он обладает магнитным моментом, в первую очередь сводится к стремлению магнитного момента ориентироваться по полю. Это явление будет рассмотрено в § 2.2. Но помимо такого взаимодействия магнитное поле изменяет движение всех электронов в атоме независимо от того в какой оболочке электрон находится.

Рассмотрим простую классическую модель движения электрона вокруг ядра (рис.14).

Рис. 14. Силы, приложенные к электрону в атоме в присутствии магнитного поля.

В отсутствии магнитного поля электрон с массой m движется по круговой орбите радиуса R с линейной скоростью v₀, соответствующей угловой частоте ω_0 , при этом центробежная сила $F_{\mu} = \frac{mv_0^2}{R}$ уравновешивается силой кулоновского притяжения электрона к ядру F_{κ} , т.е.

$$\frac{mv_0^2}{R} = m\omega_0^2 R = F_{\kappa} = \frac{e^2}{R^2} .$$
 (2.1)

При включении поля Н на электрон действует также сила Лоренца

$$\mathbf{F}_{\boldsymbol{\Pi}} = -\frac{e}{c} [\mathbf{v} \times \mathbf{H}], \qquad (2.2)$$

29

которая направлена в ту же сторону, что и центробежная сила. Таким образом теперь кулоновское притяжение уравновешивается суммой центробежной и лоренцевской сил. Если пренебречь изменением радиуса орбиты при включении поля, т.е. считать неизменным кулоновское притяжение, то из условия равновесия сил имеем

$$\frac{mv_0^2}{R} = \frac{mv^2}{R} + \frac{e}{c}vH,$$
(2.3)

где v - скорость электрона после включения поля. После замены v = ωR получим

$$\omega^2 + \frac{eH}{mc}\omega - \omega_0^2 = 0, \qquad (2.4)$$

откуда

$$\omega = -\frac{eH}{2mc} \pm \sqrt{\left(\frac{eH}{2mc}\right)^2 + \omega_0^2}.$$
(2.5)

 $\omega_0 \approx \frac{e}{2mc} 10^9$ рад/с, таким образом в достижимых полях $\frac{eH}{2mc} \pi \pi \, \omega_0$ и можно считать

$$\omega = \omega_0 - \frac{eH}{2mc}.$$
 (2.6)

Согласно теореме Лармора движущиеся заряды при включении магнитного поля сохраняют неизменным характер движения в системе координат, вращающейся с так называемой ларморовой частотой и равной как раз второму члену в (2.6). Если движение электрона по орбите свести к току *i*, охватывающему площадь S, то создаваемый этим током магнитный момент µ равен

$$\mu = \frac{i}{c}S = \frac{e}{cT}\pi R^2 = \frac{eR^2\omega}{2c}.$$
(2.7)

Здесь Т - период обращения электрона на орбите. Принимая во внимание (2.6), из (2.7) получим

$$\mu = \frac{eR^2}{2c}\omega_0 - \frac{e^2R^2}{4mc^2}H.$$
 (2.8)

Второй член в (2.8) есть изменение магнитного момента в результате действия магнитного поля. Это изменение пропорционально полю и приводит к уменьшению магнитного момента. Другими словами, приложение магнитного поля приводит к возникновению магнитного момента, направленного против поля. Это явление и называется диамагнетизмом и оно присуще всем электронам, находящимся в любой оболочке. Явление диамагнетизма можно трактовать как проявление

электромагнитной индукции. При включении магнитного поля согласно правилу Ленца возникают такие изменения токов, которые приводят к созданию магнитного момента, направленного против поля.

Найдем теперь магнитный момент единицы объема вещества, т.е. намагниченность, а также магнитную восприимчивость. R² в (2.8) имеет смысл среднего по времени значения квадрата расстояния электрона от оси, совпадающей с направлением **H**. Если за эту ось принять ось *z*, то

$$R^2 = \overline{x^2} + \overline{y^2}.$$
 (2.9)

Для сферически симметричной оболочки

$$\overline{x^2} = \overline{y^2} = \overline{z^2}.$$
 (2.10)

Пусть радиус такой оболочки r. Тогда, учитывая, что

$$\overline{r^2} = \overline{x^2} + \overline{y^2} + \overline{z^2},$$
 (2.11)

и равенства (2.9) и (2.10), получим

$$R^{2} = \frac{2}{3}\overline{r^{2}}.$$
 (2.12)

Обозначим диамагнитную часть магнитного момента через μ_{∂} . Из (2.8) и (2.12) получим

$$\mu_{o} = -\frac{e^2 \overline{r^2}}{6mc} H. \tag{2.13}$$

Это магнитный момент в расчете на один электрон. Если вещество состоит из атомов одного сорта с z электронами, то для получения магнитного момента одного атома надо просуммировать (2.13) по всем электронам и для получения намагниченности M умножить эту сумму на N - число атомов в единице объема. Таким образом

$$M = -\frac{e^2 NH}{6mc^2} \sum_{i=1}^{i=z} \overline{r_i^2}.$$
 (2.14)

Соответственно для магнитной восприимчивости χ_{∂} имеем

$$\chi_{\partial} = -\frac{e^2 N}{6mc^2} \sum_{i=1}^{i=z} \overline{r_i^2}.$$
 (2.15)

Это так называемая формула Ланжевена.

Квантовомеханическая теория диамагнетизма для атомов со сферически симметричной оболочкой дает для диамагнитной восприимчивости формулу, совпадающую с (2.15). Диамагнитная восприимчивость невелика, она порядка 10⁻⁶. Если атом обладает магнитным моментом, то, как будет показано в следующем

параграфе, восприимчивость, связанная с ориентацией этого момента магнитным полем, на два порядка больше. Поэтому диамагнетизм электронных оболочек в этом случае дает лишь небольшую поправку к суммарной восприимчивости. Исключения составляют тяжелые атомы, у которых благодаря большому числу электронов диамагнитная поправка может достигать ~ 10%. Если атомы вещества не обладают магнитным моментом, то единственным источником магнитной восприимчивости является диамагнетизм. Такие вещества называются диамагнетиками. Диамагнетики таким образом имеют отрицательную магнитную восприимчивость и, следовательно, находясь в магнитном поле, обладают намагниченностью, направленной против поля.

Зависимость восприимчивости от числа электронов и радиусов их орбит особенно хорошо видно при сравнении восприимчивостей ряда инертных газов и изоэлектронных им ионов галогенов и щелочных металлов, величины которых приведены в табл. 2.1. С увеличением числа электронов в столбцах растет и восприимчивость. В строках, соответствующих изоэлектронным оболочкам, наибольшая восприимчивость у отрицательно заряженных ионов щелочных металлов, а у атомов инертных газов промежуточные величины. Такой характер изменения восприимчивости соответствует уменьшению радиусов электронных оболочек с увеличением заряда ядра от иона галогена к атому инертного газа и далее к иону щелочного металла. Для ионов инертных газов в табл. 2.1 приведены также

Таблица 2.1

Магнитные	восприимчивости грамм-ионные ($\chi_{ион}$) ионов галоидов
	и грамм-атомные (χ_A) инертных газов

Ион	χ _{ион} . 10 ⁶	Атом	χ _A ·10 ⁶ (экспер.)	χ _{ион} . 10 ⁶	Ион	χ _{ион} . 10 ⁶
				(расчет)		
-	-	He	2,02	1,85		1,0
F	9,1	Ne	7,0	5,7	Li ⁺ Na +	6,8
Cl	23,4	Ar	18-19	18,9	K^+	14,9
Br	35	Kr	28-29	31,7	Rb	22,5
J	50,6	Xe	42-44	48,0	Cs^+	35,0

расчетные значения восприимчивостей, полученные Слэтером. Как видно, согласие теории с экспериментом хорошее. Экспериментальные значения восприимчивостей для ионов получены из измерений галогенидов щелочных металлов, например, NaCl, KCl и т.д., и определения восприимчивости, приходящейся на один тот или иной ион, в предположении, что восприимчивость соли равна сумме восприимчивостей составляющих ее ионов. Для диамагнетиков сложного состава хорошо себя оправдывает формула, предложенная Паскалем,

$$\chi_M = \sum_i n_i \chi_{A_i} + \lambda \quad . \tag{2.16}$$

Здесь $\chi_{\rm M}$ - молярная восприимчивость соединения, состоящего из n_i атомов i -го сорта, χ_{A_i} - постоянная Паскаля, имеющая смысл атомной восприимчивости атомов i - го сорта, λ - постоянная, зависящая от природы связей между атомами. Постоянные Паскаля отличаются от соответствующих атомных восприимчивостей простых соединений, но постоянны в пределах того или иного класса веществ. Формула Паскаля особенно часто используется для органических соединений.

Атомная магнитная восприимчивость диамагнетиков в газообразном состоянии от температуры не зависит. У неполярных жидкостей температурный коэффициент очень мал. Заметные изменения восприимчивости наблюдаются при изменении агрегатного состояния. Так у воды при 0° С $\chi = -0,716 \cdot 10^{-6} \text{ c}^{-1}$, а у льда $\chi = -0,700 \cdot 10^{-6} \text{ c}^{-1}$.

§2.2. Парамагнетизм

2.2.1. Парамагнетизм свободных атомов

Рассмотрим классическую теорию парамагнетизма (Ланжевен 1905 г.). Пусть имеется идеальный газ магнитных диполей с магнитными моментами μ_0 и с концентрацией N. При этом взаимодействие между диполями явно не учитывается, но считается, что диполи участвуют в тепловом движении и при столкновениях направления магнитных моментов меняются. Если такой газ магнитных диполей находится в магнитном поле, то каждая диполь обладает потенциальной энергией

$$U = -\mu_0 H \cos\theta, \qquad (2.17)$$

где θ - угол между μ_0 и **H**. Допустим, что для распределения диполей по энергии выполняется статистика Больцмана. Тогда вероятность того, что диполь направлен под углом θ к направлению поля, пропорциональна

 $e^{-\frac{U}{kT}} = e^{\frac{\mu_o H \cos \theta}{kT}} = e^{a \cos \theta}$, где $a = \frac{\mu_o H}{kT}$.

Рис.15. Телесные уголы Ω и d Ω .

Вероятность $p(\theta)$ нахождения диполя в телесном угле $d\Omega$ (рис.15), т.е. что диполь составляет с полем угол в интервале θ и θ + $d\theta$ равна

$$p(\theta) = \frac{e^{a\cos\theta} d\Omega}{\int\limits_{\Omega} e^{a\cos\theta} d\Omega} = \frac{e^{a\cos\theta} 2\pi \sin\theta d\theta}{\int\limits_{0}^{\pi} e^{a\cos\theta} 2\pi \sin\theta d\theta}.$$
 (2.18)

Для намагниченности M , т.е. магнитного момента единицы объема имеем :

$$M = \mu_o N \overline{\cos \theta} = \mu_o N \int_0^{\pi} \cos \theta p(\theta) d\theta = \mu_o N \frac{\int_0^{\pi} e^{a \cos \theta} \cos \theta \sin \theta d\theta}{\int_0^{\pi} e^{a \cos \theta} \sin \theta d\theta}.$$
 (2.19)

Введем обозначение *x*=*cos* θ. Тогда (2.19) примет вид

$$M = \mu_o N \frac{\int_{-1}^{+1} e^{ax} x dx}{\int_{-1}^{+1} e^{ax} dx},$$
 (2.20)

где

$$\int_{-1}^{+1} e^{ax} dx = \frac{1}{a} (e^{a} - e^{-a}).$$
(2.21)

Для определения интеграла в числителе продифференцируем (2.21) по а

$$\frac{\partial}{\partial a} \int_{-1}^{+1} \mathcal{C}^{ax} = \int_{-1}^{+1} \mathcal{C}^{ax} x dx = \frac{1}{a} \left(\mathcal{C}^{a} + \mathcal{C}^{-a} \right) - \frac{1}{a^{2}} \left(\mathcal{C}^{a} - \mathcal{C}^{-a} \right).$$
(2.22)

Из формулы (2.20), учитывая (2.21) и (2.22), для намагниченности получим

$$M = \mu_o N \left(\frac{e^a + e^{-a}}{e^a - e^{-a}} - \frac{1}{a} \right) = \mu_o N \left(\coth a - \frac{1}{a} \right) = \mu_o N L(a).$$
(2.23)

L(*a*) называется функцией Ланжевена. При $a \to \infty$, что соответствует случаю, когда магнитная энергия много больше тепловой, L(*a*) $\to 1$ и M = μ_0 N, т.е. все диполи направлены по полю. При комнатной температуре такое условие реально не достижимо, так как при магнитном моменте в μ_B необходимо поле порядка 10^6 Э. Но при 1 К μ_B H/кT ~1 уже при 10^4 Э.

При условии *a* << 1 L(*a*) можно разложить в ряд

$$L(a) = \coth a - \frac{1}{a} = \frac{1}{a} + \frac{a}{3} - \frac{a^3}{45} + \dots - \frac{1}{a} \cong \frac{a}{3}.$$
 (2.24)

Тогда для намагниченности получим

$$M = \frac{\mu_o Na}{3} = \frac{\mu_o^2 N}{3kT} H$$
(2.25)

и для восприимчивости имеем

$$\chi = \frac{\mu_o^2 N}{3kT} = \frac{C}{T}.$$
 (2.26)

Эта температурная зависимость восприимчивости представлена на рис.16 и называется законом Кюри (1895 г.), а коэффициент С постоянной Кюри.

Рис. 16. Зависимость от температуры магнитной восприимчивости и ее обратной величины для ланжевеновского парамагнетика.

Обратная магнитная восприимчивость линейно зависит от температуры при этом угол наклона определяется величинами N и μ_o . Закон Кюри позволяет по экспериментальным данным и известной концентрации магнитных атомов определять их магнитный момент.

Так как на самом деле для магнитных атомов имеет место пространственное квантование, то необходимо рассматривать не непрерывное распределение магнитных диполей по направлению в пространстве, а возможные дискретные ориентации, определяемые условием пространственного квантования (1.21). Можно считать, что, как и в классическом случае, справедливо статистическое

распределение Больцмана . Энергия атома в магнитном поле определяется теперь магнитными квантовыми числами $M_{\rm J}$ и равна

$$U = -g_J \mu_B M_J H \,. \tag{2.27}$$

Для вычисления намагниченности поступаем также, как и при классическом рассмотрении, но вместо интегрирования по всем ориентациям магнитного момента будем суммировать по всем возможным значениям M_J. Таким образом

$$M = g_{J} \mu_{B} N \frac{\sum_{M_{J}=-J}^{M_{J}=+J} M_{J} e^{\frac{g_{J} \mu_{B} M_{J} H}{kT}}}{\sum_{M_{J}=-J}^{M_{J}=+J} e^{\frac{g_{J} \mu_{B} M_{J} H}{kT}}} = g_{J} \mu_{B} J N \left(\frac{2J+1}{2J} \coth \frac{2J+1}{2J} a - \frac{1}{2J} \coth \frac{1}{2J} a\right) = g_{J} \mu_{B} J N B_{J}(a)$$
(2,28)

где $a = \frac{g_J \mu_B J H}{kT}$ и $B_J(a)$ - функция Бриллюэна. В сильных полях и при низких температурах $a \to \infty$, coth $\to 1$ и $B_J(a) \to 1$. Таким образом при полном насыщении

$$M = g_J \mu_B N J. \tag{2.29}$$

Величина намагниченности, даваемая формулой (2.29), отличается от полученной при классическом рассмотрении. В последнем случае для магнитного момента атома следует брать величину, даваемую формулой (1.18), и тогда для намагниченности имеем

$$M = g_J \mu_B N \sqrt{J(J+1)}.$$
 (2.30)

В тех случаях, когда ионы в кристалле находятся в S - состоянии или орбитальный момент заморожен, экспериментальные данные хорошо согласуются с формулой (2.28) (рис.17) и намагниченность в пределе стремится к величине, даваемой формулой (2.29).

Рис. 17. Кривые намагничивания парамагнитных солей [4]: I - хромо-никелевые квасцы, II - железо-аммониевые квасцы, III - гидросульфат гадолиния. Сплошные кривые теоретические, вычисленные при помощи функции Бриллюэна

При *a* << 1 функцию Бриллюэна можно разложить в ряд

$$B_{J}(a) = \frac{J+1}{3J}a - \frac{\left[(J+1)^{2} + J^{2}\right](J+1)}{90J^{3}}a^{3} + \dots \dots$$
(3.31)

Если оставить только первый член, то из (2.28) для восприимчивости получим

$$\chi = \frac{g_J^2 \mu_B^2 J(J+1)N}{3kT}.$$
(3.32)

Эта формула совпадает с формулой (2.26), полученной при классическом рассмотрении, если считать, что эффективный магнитный момент дается (1.19). В случае, если ион находится в S-состоянии или орбитальный момент заморожен

$$\chi = \frac{4\mu_B^2 S(S+1)N}{3kT}.$$
(2.33)

При приведенном выше рассмотрении считается, что все атомы находятся в основном состоянии.

Строгая квантовомеханическая теория парамагнетизма с учетом возбужденных состояний была развита Ван Флеком [5] при предположении, что энергия, обусловленная магнитным полем, мала по сравнению с расстояниями между невырожденными уровнями атома, а также по сравнению с тепловой энергией (µ_BH<<кТ). Магнитная восприимчивость согласно этой теории состоит из суммы трех членов : ориентационного парамагнетизма , диамагнетизма и так называемого поляризационного парамагнетизма или парамагнетизма Ван Флека. Ориентационная часть восприимчивость с связана с ориентацией магнитного момента атома, находящегося в основном состоянии, и этот член совпадает с
формулой закона Кюри. Член, соответствующий диамагнетизму, совпадает с формулой, полученной выше из простого классического рассмотрения. Третий член дает положительный вклад в восприимчивость и, следовательно, соответствует парамагнетизму. Эта часть восприимчивости не зависит от температуры. Поляризационный парамагнетизм обусловлен деформацией электронной оболочки атома или иона под действием магнитного поля и имеет место в тех случаях, когда электронная оболочка не сферически симметричная или не имеет оси симметрии, совпадающей с направлением поля. С точки зрения квантовой механики ванфлековский парамагнетизм обусловлен виртуальными переходами между энергетически наинизшим состоянием п и возбужденными состояниями n'. Формула для соответствующей восприимчивости имеет вид

$$\chi_{\Pi B \Phi} = 2N \sum_{n'=1}^{p} \frac{\left|\pi \ n \right| \overline{\mathcal{M}}_{z} \left|n' \ \phi\right|^{2}}{E_{n'} - E_{n}}.$$
(2.34)

Здесь N - число атомов, E_n и E_{n'} энергии основного и возбужденного состояний. Считается, что поле направлено по оси z. Вклад каждого члена в сумме (2.34) тем больше, чем меньше разность энергий E_{n'}- E. Если нет теплового возбуждения вышележащих уровней, то $\chi_{\Pi B \Phi}$ не зависит от температуры. Классическим примером является ион Eu³⁺, основное состояние которого синглет J = 0 и при температурах ниже 100К ориентационная восприимчивость отсутствует. В то же время первое возбужденное состояние лежит не очень высоко и поэтому у соединений с Eu³⁺ величина $\chi_{\Pi B \Phi}$ достигает ~ 10⁻² и при низких температурах от температуры не зависит. Ванфлековский парамагнетизм сильно выражен и у ионов Sm²⁺.

В табл.2.2 приведены магнитные моменты ионов редких земель, определенные экспериментально и вычисленные теоретически с учетом и без учета парамагнетизма Ван Флека. Видно, что для большинства редких земель поправка невелика. Исключением являются самарий и европий. Однако в общем случае большим ванфлековским парамагнетизмом при низких температурах обладают соединения с редкоземельными ионами, имеющими четное число электронов в 4f - оболочке, у которых в результате действия кристаллического поля нижний уровень является синглетом и расстояние до первого возбужденного состояния невелико. Это ионы Pr^{3+} , Tm^{3+} , Tb^{3+} , Ho^{3+} . Соединения, содержащие парамагнитные ионы с синглетным основным состоянием, часто называются ванфлековскими парамагнетиками. У ионов редких земель при температурах, при которых kT порядка расстояния между уровнями в мультиплете, вклад в восприимчивость дают как ориентационная, так и ванфлековская части парамагнетизма. Результирующая восприимчивость даются сложной формулой Ван Флека.

Для переходных элементов 3d - группы характерны узкие мультиплеты с расстояниями между уровнями много меньшими кТ и поэтому атомы могут находиться в состояниях с различными J. Теория Ван Флека для этого случая дает следующую формулу для парамагнитной восприимчивости

$$\chi = \frac{\mu_B^2 N}{3kT} [4S(S+1) + L(L+1)].$$
(2.35)

Таким образом выполняется закон Кюри. Можно считать, что в этом случае связь между орбитальным и спиновым магнитными моментами мала и они квантуются в

Ион	Электр- онная конфи- гурация	Основ- ной уровень	Фактор Ланде (gJ)	μ _{reop} (μ _Б)	µ _{теор} (µ _Б) с учетом парамаг- нетизма Ван Флека	μ _{эксп} (μ _Б)
La ³⁺	$4f^0$	${}^{1}S_{0}$	0	0	0	диамаг.
Cs^{3+}	$4f^{1}$	${}^{2}\mathrm{F}_{5/2}$	0,857	2,54	2,56	2,39
Pr^{3+}	$4f^2$	$^{3}H_{4}$	0,800	3,58	3,62	3,6
Nd^{3+}	$4f^3$	$^{4}I_{9/2}$	0,727	3,62	3,68	3,62
Pm ³⁺	$4f^4$	${}^{5}I_{4}$	0,600	2,68	2,83	-
Sm^{3+}	$4f^5$	${}^{6}\text{H}_{5/2}$	0,286	0,84	1,55	1,54
Eu ³⁺	$4f^6$	$^{7}\mathrm{F}_{0}$	0	0	3,4	3,61
Gd^{3+}	$4f^7$	${}^{8}S_{7/2}$	2,00	7,94	7,94	8,2
Tb ³⁺	$4f^8$	$^{7}\mathrm{F}_{6}$	1,00	9,7	9,7	9,6
Dy^{3+}	$4f^9$	${}^{6}\mathrm{H}_{15/2}$	1,33	10,6	10,6	10,5
Ho ³⁺	$4f^{10}$	${}^{5}I_{6}$	1,25	10,6	10,6	10,5
Er ³⁺	$4f^{11}$	$^{4}I_{15/2}$	1,20	9,6	9,6	9,5
Tm ³⁺	$4f^{12}$	${}^{3}\mathrm{H}_{6}$	1,17	7,6	7,6	7,2
Yb^{3+}	$4f^{13}$	${}^{2}\mathrm{F}_{7/2}$	1,14	4,5	4,5	4,4
Lu ³⁺	$4f^{14}$	${}^{1}S_{0}$	0	0	0	диамаг.

Таблица 2.2 Характеристики редкоземельных ионов

пространстве независимо друг от друга.

Адиабатическое размагничивание

Широко используемое охлаждение при адиабатическом расширении газов имеет определенное ограничение. При адиабатическом процессе $\delta Q = dU + pdv = 0$, где dU - внутренняя энергия, р - давление и v - объем. Следовательно, dU = -pdv и $\frac{dU}{dT}dT = -pdv$. Так как $\frac{dU}{dT} = c_p$, то $c_pdT = -pdv$ и при dv>0 dT<0, т.е. температура понижается. Однако при низких температурах даже гелий в газообразном состоянии существует только при низких давлениях. Поэтому процесс адиабатического расширения малоэффективен.

В 1926 - 27 гг независимо друг от друга Джиоком и Дебаем был предложен способ охлаждения путем адиабатического размагничивания парамагнетиков. Идея метода заключается в том, что, если процесс размагничивания происходит при адиабатических условиях, то работа, затрачиваемая на создание беспорядка в магнитной системе, совершается за счет внутренней энергии тела, что и приводит к понижению температуры. Этим способом удается понизить температуру до ~ 10⁻³ К. Принципиальная схема установки для такого охлаждения приведена на рис.18.

Рис.18. Схема установки для парамагнитного охлаждения. 1 - вакуумные оболочки,

- 2-объем с регулируемым давлением паров гелия,
- 3 парамагнитная соль.

В качестве парамагнетика используются обычно соли квасцов, содержащие 3d - ионы, например, $NH_4Fe(SO_4)_2\cdot 12H_2O$, $KCr(SO_4)_2\cdot 12H_2O$. Предварительно объем - 2 заполняется газообразным гелием при давлении $\sim 10^{-1}$ мм для создания теплового контакта с объемом, заполненным жидким гелием. Пары гелия из этого объема откачиваются при этом температура понижается до $\sim 1~K$. Включается магнитное поле, соль намагничивается, затем объем 2 откачивается и магнитное поле отключается. Парамагнитная соль размагничивается при адиабатических условиях.

2.2.2. Пара - и диамагнетизм электронов проводимости

Парамагнетизм электронов проводимости

Если рассматривать электроны проводимости в металлах в классическом представлении, как газ свободных частиц, то мы получили бы, что металлы должны обладать большой парамагнитной восприимчивостью, подчиняющейся закону Кюри. На самом деле магнитная восприимчивость металлов не столь велика и слабо зависит от температуры, Объясняется это тем, что электроны

проводимости в металле подчиняются статистике Ферми-Дирака, что, как показал Паули (1927г.), кардинальным образом меняет подход к рассмотрению их магнитных свойств.

Плотность состояний свободных электронов в металле G, как функция энергии электронов E дается формулой

$$G(E) = \frac{1}{2\pi^2} \left(\frac{2m}{\eta^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}}.$$
 (2.36)

Будем считать, что температура близка к 0 K , все состояния с энергией меньше энергии Ферми $E_{\rm F}$ заполнены и

$$E_F = \frac{\eta^2}{2m} (3\pi^2 N)^{\frac{2}{3}}, \qquad (2.37)$$

где N - число электронов в единице объема

Рис. 19. Иллюстрация паулевского парамагнетизма

↓ - спины направлены по полю.

При отсутствии поля сумма проекций спинов всех электронов на любую ось равна нулю, что схематически отражено на рис.19а, и суммарная намагниченность равна нулю. При приложении поля у всех электронов со спином по полю энергия понизится на величину $\mu_B H$, а у электронов со спином против поля на такую же величину повысится (рис.19б). Так как уровень Ферми для всех электронов должен быть один и тот же, $\frac{1}{2} G(E_F)\mu_B H$ (считаем $\mu_B H << E_F$) электронов из левой части перейдет в правую (рис. 19в) и таким образом электронов с магнитным моментом по полю станет больше на Δn . Очевидно, что

$$\Delta n = G(E_F)\mu_B H. \tag{2.38}$$

Тогда для намагниченности имеем

$$M = \mu_B \Delta n = G(E_F) \mu_B^2 H. \tag{2.39}$$

Используя (2.36) и (2.37), окончательно получим

$$M = \frac{3\mu_B^2 NH}{2E_F}.$$
 (2.40)

Таким образом парамагнитная восприимчивость электронов проводимости в металле $\chi_{\pi}^{\ {}_{3^{n}}}$ равна

$$\chi_n^{3\pi} = \frac{3\mu_B^2 N}{2E_F}.$$
 (2.41)

Как видно, χ_n^{3n} не зависит от температуры и значительно меньше по сравнению с восприимчивостью, если бы она следовала закону Кюри, так как в знаменателе вместо тепловой энергии кT стоит величина на два-три порядка большая.

Диамагнетизм электронов проводимости

Ландау [6] показал, что электроны проводимости обладают наряду с парамагнетизмом также и диамагнетизмом. При движении свободного электрона сила Лоренца, закручивающая траекторию электрона, уравновешивается центробежной силой откуда легко получить, что круговая частота движения электрона (ω_u) равна

$$\omega_u = \frac{eH}{mc}.$$
 (2.42)

 ω_u в два раза меньше ларморовой круговой частоты электрона в атоме и называется циклотронной частотой. Если магнитное поле направлено по оси z, то круговое прецессионное движение можно разложить на два взаимно перпендикулярных колебательных движения вдоль осей x и y. Эти колебательные движения согласно квантовой механике квантуются и имеют дискретный спектр энергий

$$E_n = (n + \frac{1}{2})\eta\omega_u, \qquad (2.43)$$

где n = 0,1,2 - квантовое число осциллятора. Что касается движения электрона вдоль оси z, то оно не изменяется и соответствующая энергия равна $\frac{p_z^2}{2m}$, где p_z - компонента импульса вдоль оси z. Теперь для полной энергии электрона при учете (2.42) имеем

$$E = \frac{p_z^2}{2m} + 2\mu_B H(n + \frac{1}{2}).$$
(2.44)

Таким образом энергия электрона "частично" квантуется, Квантование относится к движению в плоскости *ху* и энергия, соответствующая этому движению, в магнитном поле распадается на дискретные уровни (уровни Ландау) с расстояниями между уровнями

$$\Delta E = 2\mu_B H \left[\left(n + 1 + \frac{1}{2} \right) - \left(n + \frac{1}{2} \right) \right] = 2\mu_B H. \tag{2.45}$$

Импульс, соответствующий движению в плоскости xy, p_{\perp} также квантуется. Действительно, $p_{\perp} = (p_x^2 + p_y^2)$, а так как $E_n = \frac{p_{\perp}^2}{2m}$, то, учитывая (2.43), получим

$$p_{\perp} = \left[4m\mu_{B}H\left(n+\frac{1}{2}\right) \right]^{\frac{1}{2}}.$$
 (2.46)

Квантование величины p_{\perp} приводит к тому, что в пространстве импульсов сфера Ферми заменяется набором вписанных в нее концентрических цилиндров с общей осью, совпадающей с осью *z* (рис.20), и если до приложения магнитного поля все состояния внутри сферической поверхности Ферми равномерно заполнены, то после приложения поля возможные состояния находятся на поверхностях коаксиальных цилиндров.

Рис. 20. Иллюстрация расщепления квазинепрерывного спектра электронного газа в магнитном поле, направленном вдоль оси z. Составляющая импульса p_x осталась непрерывной. p_x и p_y квантуются по условию (2.46) и возможные значения p_x, p_y и p_z лежат внутри сферы Ферми (на рисунке ее один октаэдр ОАВС) на поверхностях концентрических цилиндров, вписанных в сферу Ферми (abcd).

Чтобы определить намагниченность, надо найти распределение электронов по возможным состояниям. Число квантовых состояний, соответствующих данному п и величинам p_z , лежащим в интервале от p_z до $p_z + dp_z$, равно числу состояний в объеме пространства импульсов в виде цилиндрического кольца высотой dp_z , радиусом p_z и шириной dp_{\perp} , объем которого $2\pi p_{\perp} dp_{\perp} dp_z$. Из (2.46) следует, что

$$p_{\perp}dp_{\perp} = 2m\mu_B H\Delta n = 2m\mu_B H = \frac{e\eta}{c}H, \qquad (2.47)$$

при $\Delta n = 1$. Величина элементарной ячейки в фазовом пространстве h^3/H , где Vобъем образца металла, а при учете двух возможных ориентаций спина $h^3/2H$. Для статистического веса G_n, учитывая (2.47), имеем

$$G_{n} = 2\pi p_{\perp} dp_{\perp} dp_{z} \frac{2V}{h^{3}} = \frac{2eVH}{ch^{2}} dp_{z}.$$
 (2.48)

Теперь можно написать чему равна статистическая сумма

$$Z = \sum_{n=0}^{n=\infty} \int_{-\infty}^{+\infty} \frac{2eVH}{ch^2} \exp\left[-\frac{\mu_B H(2n+1) + \frac{p_z^2}{2m}}{kT}\right] dp_z = \frac{eVH}{ch^2} \cdot \frac{(2\pi mkT)^{\frac{1}{2}}}{sh\frac{\mu_B H}{kT}} = \left(\frac{2\pi mkT}{h^2}\right)^{\frac{3}{2}} \cdot \frac{\mu_B H_{kT}}{sh\left(\frac{\mu_B H_{kT}}{kT}\right)}.$$
(2.49)

Зная Z, найдем намагниченность

$$M = kTN\frac{d\ln Z}{dH} = -\mu_B N \left[ch \left(\frac{\mu_B H}{kT} - \frac{kT}{\mu_B H} \right) \right] = -\mu_B NL \left(\frac{\mu_B H}{kT} \right), \quad (2.50)$$

Здесь $L\left(\frac{\mu_B H}{kT}\right)$ - функция Ланжевена. В случае $\mu_B H \ll kT$ функцию Ланжевена можно разложить в ряд (2.24) и если ограничиться первым членом, то получим

$$\chi_{o}^{_{3,1}} = -\frac{\mu_{B}^{2}N}{3kT},$$
(2.51)

Таким образом электроны проводимости обладают наряду с парамагнитной также и диамагнитной восприимчивостью. Формула (2.51) справедлива для невырожденного газа электронов, имеющего классическое распределение Максвелла-Больцмана. В действительности электронный газ вырожден и свободные состояния имеются только в узком интервале энергий порядка кТ вблизи уровня Ферми. Число электронов, находящихся в этом интервале энергий,

обозначим как n_F и оно равно

$$n_F = G(E_F)kT. (2.52)$$

Подставляя сюда выражение для G(E) (2.36) при $E = E_F$ и учитывая (2.37), получим

$$n_F = \frac{3kTN}{2E_F}.$$
(2.53)

Теперь, заменяя в (2.50) N на $n_{\rm F}$, окончательно для диамагнитной восприимчивости получим

$$\chi_{o}^{\mathfrak{I}} = -\frac{\mu_{B}^{2}N}{2E_{F}}.$$
(2.54)

Эта восприимчивость не зависит от температуры и составляет по абсолютной величине ровно одну треть от парамагнитной (см. формулу (2.41)). Таким образом окончательно для магнитной восприимчивости электронов проводимости получим :

$$\chi^{\mathfrak{m}} = \frac{\mu_B^2 N}{E_F}.$$
 (2.55)

Экспериментальные результаты

У нормальных (непереходных) металлов магнитная восприимчивость определяется вкладами, которые дают электроны проводимости и диамагнетизм ионного остова. Как мы видели, эти вклады мало зависят от температуры и это хорошо согласуется с экспериментом. Что касается вычисления величин восприимчивости, то здесь возникает вопрос о величине восприимчивости ионного остова, которая определяется косвенно, и о том, какая часть валентных электронов участвует в электропроводности, что фактически не известно.

В табл.2.3 приведены экспериментальные величины восприимчивостей, а также восприимчивости ионного остова. У металлов V группы периодической системы элементов (Bi, Sb) большая диамагнитная восприимчивость. По-видимому, это объясняется тем, что только небольшая часть валентных электронов участвует в проводимости.

Таблица 2.3

Экспериментальные величины грамм- атомных (χ_A) и объемных (χ) магнитных восприимчивостей нормальных металлов, а также расчетные грамм- ионные ($\chi_{ион}$) восприимчивости ($T \cong 300$ K)

Металл	χ· 10 ⁶	$\chi_{A} \cdot 10^{6}$	Ион	χ _{ион} · 10 ⁶
Li	+1,89	+24,6	Li ⁺	-1
Na	+ 0,68	+16,1	Na^+	- 6,5
Κ	+ 0,47	+ 21,35	K^+	-14
Rb	+ 0,33	+18,2	Rb^+	- 23
Cs	+ 0,42	+29,9	Cs^+	-36
Cu	- 0,76	- 5,41	Cu^+	-18
Ag	- 2,1	- 21,5	Ag^+	-34
Au	- 2,9	-29,6	Au^+	-40
Be	- 1,83	- 9,02	Be ²⁺	-0,4
Mg	+ 0,95	+ 13,25	Mg^{2+}	- 2,9
Ca	+ 1,7	+ 44,0	Ca ²⁺	-10,4
Sr	+ 2,65	+ 91,2	Sr^{2+}	-20
Ba	+0,56	+ 20,4		
Zn	- 1,24	- 11,4	Zn^{2+}	-13
Cd	- 1,52	- 19,7		-27
			Cd^{2+}	
Hg	-2,25	-33,3	Hg^{2+}	-40,6

Al	+1,67	+16,7	Al^{3+}	-2,5
Ga	- 1,84	- 21,7		
In	- 0,8	- 12,6	In ³⁺	-32
αTl	- 3,37	- 58,0	Tl^{3+}	- 48
Sn(бел.)	+0,276	+ 4,5	Sn^{4+}	- 28
Sn(cep.)	- 0,184	- 3,7		
Pb	- 1,36	- 24,86	Pb^{4+}	- 42
As	- 0,42	- 5,5		
Sb	- 5,9	- 107,0		
Te	- 2,0	- 40,8		
Bi	- 13,0	- 284,0		

У переходных металлов магнитные свойства определяются в первую очередь магнитными моментами не полностью заполненных d - и f - оболочек. Все эти металлы парамагнетики и обладают восприимчивостью на один - два порядка большей, чем у нормальных парамагнитных металлов и с более сильной температурной зависимостью. Восприимчивости ряда переходных металлов приведены в табл.2.4.

Таблица 2.4

Грамм- атомные	(χ _A) и	объемные	(χ)	магнитные	восприимчивости
	перехо	дных мета.	плов	s (T ≅ 300K)

Элемент	$\chi \cdot 10^6$	$\chi_{A} \cdot 10^{6}$	Элемент	$\chi \cdot 10^6$	$\chi_{A} \cdot 10^{6}$
Sc	19,0	286	La	4,93	112
Ti	14,4	161	Yb	7,95	250,0
V	28,5	296			
			Lu	18,7	336,0
Y	8,17	196	Hf	4,6	70,0
Zr	8,40	121,0	Та	13,9	152,0
Nb	18,9	212,0	W	5,6	55,0
Мо	8,5	82,5	Re	7,33	65,5
Tc	2,5	270	Os	0,11	9,5
Ru	5,18	44,0	Ir	4,06	35,0
Rh	12,4	101,0	Pt	20,8	189,0
Pd	63,5	558,0			
			U	52,8	414,0

ГЛАВА 3

Магнитное упорядочение

В твердых телах с большим содержанием переходных элементов группы железа или редких земель взаимодействие между атомами, обладающими магнитными моментами, приводит к возникновению при температуре, характерной для каждого вещества, магнитного упорядочения, т.е. наличию определенного дальнего порядка в направлениях магнитных моментов атомов. Наиболее простым типом упорядочения является ферромагнитное, при котором магнитные моменты всех атомов параллельны. Суммирование магнитных моментов всех атомов приводит к наличию макроскопической спонтанной намагниченности M_s . Было давно известно, что ферромагнетиками являются некоторые 3d-металлы при этом с высокими температурами перехода в магнитоупорядоченное состояние, это Fe (1044 K), Co (1388 K), Ni (627 K) и из редкоземельных металлов Gd (293 K).

Встает вопрос - благодаря какому взаимодействию возникает магнитное упорядочение? Простая оценка показывает, что это не может быть просто диполь - дипольное взаимодействие магнитных моментов атомов. Действительно, при температуре появления магнитного порядка T_C энергия магнитного диполя в магнитном поле должна быть порядка тепловой энергии, т.е. $\mu H \approx kT_C$. Отсюда

$$H \approx \frac{kT_C}{\mu} \cong \frac{1.4 \cdot 10^{-16} \cdot 10^3}{2 \cdot 10^{-20}} = 0.7 \cdot 10^7 \,\mathcal{A}$$

(считалось, что $\mu = 2\mu_B$). Реально, как показывают расчеты, диполь-дипольное взаимодействие может привести к магнитному упорядочению только при температуре ~ 1K.

Первый шаг в решении проблемы возникновения ферромагнитного упорядочения был сделан Вейссом (1907 г.), который ввел некое молекулярное поле, пропорциональное намагниченности, Это позволило объяснить не только появление спонтанной намагниченности и ее зависимость от температуры, но и температурную зависимость магнитной восприимчивости. Природа сил взаимодействия, приводящих к магнитному упорядочению, была установлена в 1927 г. практически одновременно Френкелем и Гайзенбергом.

§ 3.1. Теория молекулярного поля ферромагнетиков

Вейсс предположил, что на магнитный момент каждого атома действует некое молекулярное поле H_E, пропорциональное намагниченности, т.е.

$$H_E = \lambda M, \tag{3.1}$$

где λ - коэффициент молекулярного поля. Далее считается, что формула для намагниченности в магнитном поле, полученная для невзаимодействующих магнитных диполей, применима и в этом случае, но при учете того, что на диполи действует не только внешнее, но и молекулярное поле H_E . Тогда вместо формулы (2.19) можно написать

$$M = \mu_0 N \frac{\int_0^{\pi} \exp\left[\frac{\mu_0(H + \lambda M)}{kT} \cos\theta\right] \cos\theta \sin\theta d\theta}{\int_0^{\pi} \exp\left[\frac{\mu_0(H + \lambda M)}{kT} \cos\theta\right] \sin\theta d\theta} = \mu_0 N L(a), \qquad (3.2)$$

где

$$a = \frac{\mu_0 (H + \lambda M)}{kT},$$
(3.3)

откуда

$$M = \frac{kT}{\mu_0 \lambda} a - \frac{H}{\lambda}.$$
(3.4)

Намагниченность должна удовлетворять обоим уравнениям (3.2) и (3.4). Решение будем искать графически, как пересечение кривых зависимостей M от *a* - кривой функции Ланжевена и прямой линии (рис.21).

Рис. 21. Зависимость намагниченности от α по (3.2) и (3.3).

При H = 0 и высоких температурах решения нет, т.е. M = 0, но с понижением температуры наклон прямой уменьшается. При некоторой температуре T_C, которая называется температурой или точкой Кюри, прямая становится касательной к кривой Ланжевена в начале координат и с понижением температуры появляется точка пересечения. Намагниченность растет с понижением температуры, стремясь к μ_0 N при T \rightarrow 0. Так как H = 0, то это спонтанная намагниченность. Таким образом введение молекулярного поля позволяет объяснить возникновение спонтанной намагниченности и можно показать, что

$$M_s \propto \left(T_c - T\right)^{1/2}.$$
(3.5)

Рис. 22. Зависимость от температуры спонтанной намагниченности M_{s} , намагниченности M при $H \neq 0$, χ и $1/\chi$ для ферромагнетика по теории молекулярного поля.

Такая зависимость (рис.22) неплохо согласуется с экспериментом в области не очень больших (T_C - T), хотя чаще показатель степени не 1/2, а 1/3. При низких температурах теория молекулярного поля также дает температурную зависимость намагниченности, не совсем совпадающую с экспериментом. Лучшее согласие дает формула, полученная Блохом из теории спиновых волн

$$M_{S} = \mu_{0} N \left[1 - \left(\frac{T}{T_{C}} \right)^{3/2} \right].$$
 (3.6)

При наличии внешнего поля совместное решение (3.2) и (3.4) имеется при любых температурах, поэтому, строго говоря, фазового перехода нет.

Найдем теперь магнитную восприимчивость выше температуры Кюри. Принимая во внимание (3.2), можно записать

$$\chi = \frac{\partial M}{\partial H} = \mu_0 N L'(a) \frac{\partial a}{\partial H}.$$
(3.7)

Из (3.3) имеем

$$\frac{\partial a}{\partial H} = \frac{\mu_0}{kT} + \frac{\lambda\mu_0}{kT} \cdot \frac{\partial M}{\partial H} = \frac{\mu_0}{kT} + \frac{\lambda\mu_0}{kT} \chi.$$
(3.8)

При высоких температурах a <<1 и в разложении L(a) (2.24) можно ограничиться первым членом a/3. Подставляя при этом условии (3.8) в (3.7) и решая относительно χ , получим

$$\chi = \frac{\mu_0^2 N}{3k \left(T - \frac{\mu_0^2 \lambda N}{3k}\right)}.$$
(3.9)

Производные от М по а из (3.2) и (3.4) равны соответственно

$$\frac{\partial M}{\partial a} = \mu_0 N L'(a) \cong \frac{1}{3} \mu_0 N, \qquad (3.10)$$

$$\frac{\partial M}{\partial a} = \frac{kT}{\lambda\mu_0}.$$
(3.11)

В точке Кюри , т.е. при $T=T_{\rm C}$ эти производные равны и , приравнивая их , получим

$$T_C = \frac{\mu_0^2 \lambda N}{3k}.$$
 (3.12)

Теперь, учитывая (3.12), формулу для восприимчивости (3.9) можно переписать в виде

$$\chi = \frac{\mu_0^2 N}{3k(T - T_c)} = \frac{C}{T - T_c}.$$
(3.13)

Это так называемый закон Кюри-Вейсса для магнитной восприимчивости ферромагнетика. $C = \frac{\mu_0^2 N}{3k}$ - называется постоянной Кюри. Зависимости $\chi(T)$ и $1/\chi(T)$ схематически представлены на рис.22.

Если μ_0 заменить на μ_J по формуле (1.18), то вместо (3.13) и (3.12) получим соответственно

$$\chi = \frac{g^2 \mu_B^2 J (J+1) N}{3k(T-T_C)} \quad \text{i}$$
(3.14)

$$T_{C} = \frac{g^{2} \mu_{B}^{2} J(J+1) \lambda N}{3k}.$$
 (3.15)

§ 3.2 Термодинамическая теория ферромагнитного фазового перехода

Для рассмотрения физических свойств ферромагнетиков можно использовать термодинамическую теорию фазовых переходов второго рода, развитую Ландау. В качестве параметра, характеризующего изменение симметрии при фазовом переходе, можно взять величину относительной намагниченности или просто намагниченность. Для простоты будем считать, что состояние ферромагнетика определяется только величиной намагниченности, а влияние более слабых взаимодействий, которые будут рассмотрены ниже, учитывать не будем, Тогда для той части термодинамического потенциала ферромагнетика, которая зависит от намагниченности , можно написать разложение в ряд по четным степеням намагниченности и ограничиться членами четвертого порядка

$$\Phi = \frac{1}{2}aM^2 + \frac{1}{4}bM^4 - HM.$$
(3.16)

Учтены только четные степени, так как Φ должен быть инвариантен относительно изменения направления намагниченности на обратное и считается, что **M** || **H**. Условиями минимума Φ являются

$$\frac{\partial \Phi}{\partial M} = aM + bM^3 - H = 0, \qquad (3.17)$$

$$\frac{\partial^2 \Phi}{\partial M^2} = a + 3bM^2 \phi 0. \tag{3.18}$$

При H=0 уравнение (3.17) имеет два корня M = 0 и

$$M = \sqrt{-\frac{a}{b}}.$$
(3.19)

Первое решение соответствует $T>T_C$ и при этом из (3.18) следует, что a>0. Очевидно, что второе решение соответствует области со спонтанной намагниченностью. Поскольку Φ должен иметь минимум при сколь угодно малой M, то в этой области a<0. Что касается b, то при всех температурах b>0. При $T>T_C$ эти условия соответствуют наличию только одного экстремума при M=0, а при $T<T_C$ обеспечивают минимум Φ при $M\neq 0$ и удовлетворяется условие вещественности M в (3.19). На рис.23 приведены зависимости Φ от M при нескольких температурах

Рис. 23. Зависимость термодинамического потенциала Ф от намагниченности ферромагнетика при трех температурах.

Из условия непрерывности Φ следует, что при $T = T_C$ a = 0. Таким образом a является функцией температуры. Разлагая a по степеням $\frac{T - T_C}{T_C}$ вблизи T_C и ограничиваясь первым членом, получим

$$a = \alpha' \frac{T - T_C}{T_C},\tag{3.20}$$

где а' - некий коэффициент. Подставляя это выражение для *а* в (3.19), получим

$$M_{S} = \left[\frac{\alpha'(T_{C} - T)}{bT_{C}}\right]^{\frac{1}{2}}.$$
(3.21)

Зависимость M_S от температуры такая же, как полученная по теории молекулярного поля (см. (3.5)).

Найдем теперь восприимчивость. Продифференцируем (3.17) по H и при условии M = 0, т.е. при $T > T_C$, получим $\chi = \frac{1}{a}$. Поскольку *a* зависит от температуры по (3.20), то видно, что χ следует закону Кюри-Вейсса

$$\chi = \frac{T_C}{a'(T - T_C)}.$$
(3.22)

§ 3.3. Обменное взаимодействие (Молекула водорода и модель Гайзенберга)

Гайтлер и Лондон в 1927 г. провели квантовомеханическое рассмотрение молекулы водорода и получили, что энергия такой молекулы зависит от взаимной ориентации спинов принадлежащих молекуле двух электронов. Этот результат и явился отправной точкой для Френкеля и Гайзенберга в объяснении взаимодействия, приводящего к возникновению магнитного упорядочения.

Рассмотрим кратко ход решения задачи молекулы водорода. Схематично расположение ядер и электронов двух атомов водорода представлено на рис.24.

Рис. 24. Схематическое изображение молекулы водорода.

Там же приведены обозначения необходимых расстояний. Совокупность координат электронов 1-го и 2-го атомов обозначим соответственно q₁ и q₂. Уравнение Шредингера для всей молекулы запишется в виде

$$\left\{\Delta_{1} + \Delta_{2} + \frac{2m}{\eta^{2}} \left[E - V(R, r, r_{a1}, r_{a2}, r_{b1}, r_{b2}) \right] \right\} \Psi(q_{1}, q_{2}) = 0, \qquad (3.23)$$

где $\Delta_i = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2}$ - оператор Лапласа, $V = \frac{e^2}{R} + \frac{e^2}{r} - \frac{e^2}{r_{a1}} - \frac{e^2}{r_{a2}} - \frac{e^2}{r_{b1}} - \frac{e^2}{r_{b2}}$ - электростатическая энергия.

Уравнение решается методом последовательных приближений. При нулевом приближении $R \to \infty$, $r_{a1} << r_{a2}$, $r_{b2} << r_{b1}$ и задача распадается на две задачи об атоме водорода. Пусть у атома А 1-ый электрон, а у атома В 2-ой с волновыми функциями соответственно $\psi_a(q_1)$ и $\psi_b(q_2)$ и наинизший уровень каждого из атомов есть E_0 . Тогда волновые функции $\psi_a(q_1)$ и $\psi_b(q_2)$ удовлетворяют уравнениям

$$\begin{bmatrix} \Delta_1 + \frac{2m}{\eta^2} \left(E_0 + \frac{e^2}{r_{a1}} \right) \end{bmatrix} \psi_a(q_1) = 0,$$

$$\begin{bmatrix} \Delta_1 + \frac{2m}{\eta^2} \left(E_0 + \frac{e^2}{r_{b2}} \right) \end{bmatrix} \psi_b(q_2) = 0.$$
(3.24)

Будем теперь рассматривать совокупность двух атомов как единую систему. Тогда волновая функция для системы $\Psi_0(q_1,q_2)$ равна произведению волновых функций для отдельных электронов, как вероятность двух независимых событий, т.е.

$$\Psi_0(q_1,q_2) = \psi_a(q_1)\psi_b(q_2) \quad \text{или} \quad \Psi_0(q_1,q_2) = \psi_a(q_2)\psi_b(q_1) , \quad (3,25)$$

так как электроны неразличимы. Такой системе соответствует энергия $2E_0$. Так как уравнение Шредингера линейное, то его решением является и линейная комбинация функций (3.25), т.е.

$$\Psi_0(q_1,q_2) = \alpha \psi_a(q_1) \psi_b(q_2) + \beta \psi_a(q_2) \psi_b(q_1).$$
(3.26)

Функции ψ_a и ψ_b нормированы, т.е.

$$\int \left| \psi_a(q) \right|^2 d\tau = \int \left| \psi_b(q) \right|^2 d\tau = 1, \qquad (3.27)$$

где d τ - элемент объема и интегрирование ведется по всему конфигурационному пространству. Будем полагать также, что функции, относящиеся к разным ядрам, ортогональны, т.е.

$$\int \psi_a^*(q) \psi_b(q) d\tau = 0. \tag{3.28}$$

Положение об ортогональности основано на том, что обе функции быстро убывают при удалении от ядра. Однако при сближении ядер перекрытие будет иметь место и ортогональность точно не соблюдается, но поправка будет иметь величину второго порядка малости и для нас она не существенна.

Перейдем теперь от нулевого к следующему - первому приближению и учтем те взаимодействия, которыми при большом расстоянии между ядрами можно было пренебречь. Пусть эти взаимодействия дают поправку к энергии Е'. Таким образом для полной энергии имеем

$$E = 2E_0 + E' . (3.29)$$

Предположим, что Ψ_0 (3.26) является решением уравнения Шредингера (3.23) и подставим в него Ψ_0 . При этом учтем уравнения (3.24) и аналогичные им для $\psi_a(q_2)$ и $\psi_b(q_1)$. В результате подстановки получим следующее уравнение

$$\alpha \left[E' - \frac{e^2}{R} - \frac{e^2}{r} + \frac{e^2}{r_{b1}} + \frac{e^2}{r_{a2}} \right] \psi_a(q_1) \psi_b(q_2) + \beta \left[E' - \frac{e^2}{R} - \frac{e^2}{r} + \frac{e^2}{r_{a1}} + \frac{e^2}{r_{b2}} \right] \psi_a(q_2) \psi_b(q_1) = 0.$$
(3.30)

Задача сводится к подбору таких значений α , β и E', при которых уравнение удовлетворяется .

Умножим уравнение (3.30) на $\psi_a^*(q_1)\psi_b^*(q_2)$ и проинтегрируем по всему конфигурационному пространству. Затем уравнение (3.30) умножим на $\psi_a^*(q_2)\psi_b^*(q_1)$ и тоже проинтегрируем. При интегрировании примем во внимание (3.27) и (3.28). В результате интегрирования получим два однородных уравнения для определения α , β и Е'.

$$\alpha(E'-C) - \beta J = 0,$$

$$\alpha J - \beta(E'-C) = 0.$$
(3.31)

Здесь

$$C = \frac{e^2}{R} + \int \left(\frac{e^2}{r} - \frac{e^2}{r_{a2}} - \frac{e^2}{r_{b1}}\right) |\psi_a(q_1)|^2 |\psi_b(q_2)|^2 dq_1 dq_2$$
(3.32)

и является электростатической энергией двух атомов с одним электроном у каждого.

$$J = \int \left(\frac{e^2}{r} - \frac{e^2}{r_{a2}} - \frac{e^2}{r_{b1}}\right) \psi_a^*(q_1) \psi_b^*(q_2) \psi_a(q_2) \psi_b(q_1) dq_1 dq_2$$
(3.33)

и называется обменным интегралом. Физический смысл J не имеет классической аналогии. Хотя эта энергия и электростатическая по своей природе, но она является следствием чисто квантового эффекта - неразличимости частиц, поэтому имеется конечная вероятность для электрона 1 находится в оболочке атома B, а для электрона 2 в оболочке атома A. Система уравнений (3.31) имеет решение, если ее детерминант равен нулю, откуда получим $E' = C \pm J$ и решениями (3.31) являются $\alpha = \pm \beta$. Таким образом у уравнения (3.30) два решения

$$\Psi_{0}^{(1)}(q_{1},q_{2}) = \alpha \Big[\psi_{a}(q_{1})\psi_{b}(q_{2}) + \psi_{a}(q_{2})\psi_{b}(q_{1}) \Big]$$
(3.34)

с энергией

$$E^{(1)} = 2E_0 + C + J \tag{3.35}$$

И

$$\Psi_{0}^{(2)}(q_{1},q_{2}) = \alpha \left[\psi_{a}(q_{1})\psi_{b}(q_{2}) - \psi_{a}(q_{2})\psi_{b}(q_{1}) \right]$$
(3.36)

с энергией

$$E^{(2)} = 2E_0 + C - J. \tag{3.37}$$

Расстояние между этими уровнями энергии равно 2J. Какое из состояний выгоднее зависит от знака J. Отметим, что $\Psi_0^{(1)}$ является решением симметричным, так как не меняет знак при перестановке электронов. $\Psi_0^{(2)}$ - решение антисимметричное - при перестановке электронов знак меняется.

В проведенном рассмотрении не учитывалось наличие у электронов спинов и магнитных моментов. Волновая функция, полностью описывающая состояние системы, должна отражать и ориентацию в пространстве спинов. Пусть σ_1 и σ_2 спиновые координаты первого и второго электронов и $\chi(\sigma_1, \sigma_2)$ соответствующая им функция. Очевидно, что если спины параллельны, то спиновая функция симметричная, если антипараллельны, то антисимметричная. Если не учитывать спинорбитальное взаимодействие, то полную волновую функцию системы $\Psi^{(i)}(q,\sigma)$ можно представить как произведение двух функций - одной, зависящей от пространственных координат, и второй, зависящей от ориентации спинов,

$$\Psi^{(i)}(q,\sigma) = \Psi_0(q_1,q_2)\chi(\sigma_1,\sigma_2) .$$
(3.38)

Согласно принципу Паули в системе из любого числа электронов осуществляются лишь те состояния, волновые функции которых антисимметричны относительно перестановки как пространственных, так и спиновых координат любой пары электронов. Следовательно, функция $\Psi(q,\sigma)$ должна быть антисимметричной и чтобы это выполнялось симметрии функций $\Psi_0^{(i)}(q_1,q_2)$ и $\chi(\sigma_1,\sigma_2)$ не должны совпадать. Поэтому антипараллельной ориентации спинов соответствует функция $\Psi_0^{(1)}(q_1,q_2)$, а параллельной $\Psi_0^{(2)}(q_1,q_2)$. Таким образом мы получили важный вывод - энергия молекулы зависит от взаимной ориентации спинов электронов $E^{(1)} \equiv E_{\uparrow\downarrow}$ и $E^{(2)} \equiv E_{\uparrow\uparrow}$. Вычисленные зависимости $E_{\uparrow\downarrow}$, $E_{\uparrow\uparrow}$ и C от расстояния между ядрами

Рис. 25. Расчетные зависимости $E^{(1)}{}_{\uparrow\downarrow}, E^{(2)}{}_{\uparrow\uparrow}$ и С от расстояния между ядрами атомов водорода. Пунктирная кривая получена из экспериментальных данных. a- боровский радиус атома водорода.

Пунктиром дана зависимость, полученная из экспериментальных данных. Видно, что глубокий минимум энергии имеет место для антипараллельной ориентации спинов.

Хотя обменный интеграл и имеет электростатическую природу, но связан с чисто квантовым эффектом и в отличии от кулоновской энергии очень быстро уменьшается с расстоянием, так как зависит от перекрытия электронных волновых функций. В исходный гамильтониан спиновые переменные явно не входят, поэтому удобно ввести некий эффективный гамильтониан, действующий только на спиновые переменные, и для этого использовать операторы спинов электронов \vec{S}_1 и \vec{S}_2 . В единицах η собственные значения квадратов этих векторов равны

$$S_1(S_1+1) = S_2(S_2+1) = \frac{1}{2}(\frac{1}{2}+1) = \frac{3}{4}.$$
 (3.39)

Для собственного значения квадрата результирующего спина S молекулы имеем

$$S(S+1) = (S_1 + S_2)^2 = S_1^2 + S_2^2 + 2S_1S_2 = \frac{3}{4} + \frac{3}{4} + (2S_1S_2)_{co6cm6.3hay.}$$
(3.40)

Отсюда собственное значение S_1S_2 равно - 3/4, если S = 0 и 1/4, если S = 1.

Теперь можно написать гамильтониан, действующий только на спиновые переменные и имеющий собственные значения $E_{\uparrow\downarrow}$ и $E_{\uparrow\uparrow}$ для соответственно S = 0 и S = 1.

$$\vec{H} = \frac{1}{4} E_{\uparrow\downarrow} + \frac{3}{4} E_{\uparrow\uparrow} + \left(E_{\uparrow\uparrow} - E_{\uparrow\downarrow} \right) S_1 S_2.$$
(3.41)

Если в (3.41) опустить члены, не зависящие от операторов спина, то получим так называемый гамильтониан обменного взаимодействия

$$\vec{H}_{o\delta M} = -2J\vec{S}_1\vec{S}_2. \tag{3.42}$$

Из (3.35) и (3.37) имеем $J = \frac{1}{2}(E_{\uparrow\downarrow} - E_{\uparrow\uparrow})$, т.е. определяет величину расщепления состояний с антипараллельным и параллельным направлениями спинов. По порядку величины обменный интеграл составляет $J \sim \xi e^2 / R$, где ξ порядка 0,1 и определяется степенью перекрытия волновых функций электронов.

Идея Френкеля и Гайзенберга заключалась в том, что причиной упорядочения магнитных моментов атомов является именно обменное взаимодействие, которое благодаря своей электростатической природе достаточно сильное. Если считать, что спины локализованы на атомах и не учитывать орбитальный момент (модель Гайзенберга), то гамильтониан системы атомов можно записать в виде

$$\vec{H}_{o\delta M.} = -\sum_{\alpha,\beta} 2J_{\alpha\beta} \vec{S}_{\alpha} \vec{S}_{\beta}.$$
(3.43)

Под \vec{S}_{α} и \vec{S}_{β} будем понимать полные спины атомов. Из гамильтониана (3.43) можно получить выражение для обменной энергии в квазиклассическом приближении. Для этого заменим $\vec{H}_{oбм.}$ на обменную энергию $E_{o\delta M.}$, произведение операторов спинов на скалярное произведение векторов спинов. Тогда для энергии обменного взаимодействия *i* - го иона со всеми другими ионами имеем

$$E_{io\delta M.} = -\sum_{j(j\neq i)} 2J_{ij} \mathbf{S}_i \mathbf{S}_j.$$
(3.44)

Очевидно, для того, чтобы магнитные моменты атомов были параллельны, т.е. было ферромагнитное упорядочение, необходимо чтобы обменный интеграл был положительным. Будем считать, что все магнитные атомы одинаковы и находятся в S - состоянии. Тогда, умножив и разделив (3.44) на $4\mu_B^2$, получим

$$E_{i_{O \tilde{O} M.}} = -2\mu_B S_i \sum_j \frac{2J_{ij} 2\mu_B S_j}{4\mu_B^2} = -\mu_i \sum_j \frac{2J_{ij} \mu_j}{4\mu_B^2}.$$
 (3.45)

Так как обменное взаимодействие быстро убывает с расстоянием, то будем считать, что достаточно учесть взаимодействие только с ближайшими магнитными соседями, число которых обозначим через z. Теперь, опуская индексы у J, для $E_{ioбm}$ имеем

$$E_{io\delta M.} = -\frac{2J\mu_i z}{4\mu_B^2} \langle \mu_j \rangle.$$
(3.46)

Будем считать, что обменная энергия, приходящаяся на один ион, эквивалентна энергии взаимодействия магнитного момента этого иона с неким эффективным обменным полем H_E , т.е. $E_{io\delta M} = -\mu_i H_E$. Тогда, принимая, что $<\mu_i> = M / N$, где N - число магнитных атомов в единице объема, для H_E получим

$$H_{E} = \frac{2Jz}{4\mu_{B}^{2}N}M.$$
 (3.47)

В такой интерпретации обменное поле эквивалентно молекулярному полю Вейсса и таким образом λ в (3.1) равна

$$\lambda = \frac{2Jz}{4\mu_R^2 N}.$$
(3.48)

Подставив (3.48) в (3.15) получим

$$T_C = \frac{2JzS(S+1)}{3k}.$$
 (3.49)

Несмотря на всю грубость сделанных допущений формула (3.49) может вполне служить для оценок величины J по T_C и наоборот.

§ 3.4. Обменное взаимодействие в 3d - металлах

В 3d - металлах волновые функции 3d - электронов заметно перекрываются, что приводит к существенной коллективизации этих электронов, которые вместе с валентными электронами образуют смешанную ферми-жидкость. Теория ферромагнетизма в 3d-металлах развивалась Блохом (1929 г.), Стонером (1936 г.) и др. Модель коллективизированных электронов, предложенная Стонером основана как раз на учете особенностей зонной структуры 3d-металлов. На рис.26 схематически представлены функции плотности состояний для 4s-электронов проводимости G_s(E) и 3d-электронов G_d(E) для металлов с полностью и не полностью заполненной 3d-полосой. Допустим при не полностью заполненной 3dполосе в ферромагнитном состоянии из-за обменного взаимодействия происходит сдвиг подзон, соответствующих разным направлениям спинов, на величину так называемого обменного расщепления, т.е. подзоны смещаются аналогично тому, как смещались функции распределения свободных электронов парамагнитного металла во внешнем магнитном поле (см. рис.19). При этом может быть два случая : a) 3d-подполосы смещены так, что одна из них полностью заполнена, уровень Ферми расположен вне ее и проходит через вторую не полностью заполненную подполосу (рис.27а); б) обе полосы не полностью заполнены (рис.27б) и уровень Ферми проходит через них. В случае парамагнитного металла с полностью заполненной 3d-полосой для спинов обеих ориентаций в отсутствии

Рис. 26. Функции плотности состояний для 4s-электронов [G_d(E)] и 3d-электронов [G_d(E)]:

- а) металл с полностью заполненной электронами 3d-полосой,
- б) переходный металл 3d-полоса не полностью заполнена электронами.

Рис. 27. Функции плотности состояний для электронов 3d- и 4s-полос для двух противоположно направленных проекций спинов . а) Уровень Ферми выше 3d⁺полосы . б) Уровень Ферми ниже потолка 3d⁻полосы .

внешнего магнитного поля смещения полос нет (рис.28). Ферромагнетизм в такой модели возможен, если в результате сдвига энергетических подполос,

соответствующих разным ориентациям спинов, часть электронов перейдет из полосы (+) в полосу (-) и это будет энергетически выгодно

Рис. 28. Функции плотности состояний в перекрывающихся 3d- и 4s-полосах для электронов с противоположно ориентированными проекциями слинов в случае непереходного металла.

Пусть в парамагнитном состоянии число электронов в единице объема в полосах (+) и (-) равно соответственно n₊ и n. и n₊ = n. = N/2, где N - полное число электронов. Число электронов, перешедших из одной полосы в другую приходящихся на единицу объема, обозначим через v, а через δE обозначим сдвиг энергетических полос, связанный с обменным взаимодействием. Переход электронов приведет к увеличению кинетической энергии в расчете на единицу объема на v δE . Обменная энергия зависит от взаимодействия пар электронов с одинаковыми спинами, поэтому пропорциональна квадрату числа электронов в каждой подполосе и обменной энергии, приходящейся на пару электронов ($\epsilon_{oбм.}$). При возникновении намагниченности для выигрыша обменной энергии $\Delta E_{oбм.}$

$$\Delta E_{o\delta M.} = -\varepsilon_{o\delta M.} \left[\left(\frac{N}{2} + \nu \right)^2 + \left(\frac{N}{2} - \nu \right)^2 - 2 \left(\frac{N}{2} \right)^2 \right] = -2 \left| \varepsilon_{o\delta M.} \right| \nu^2.$$
(3.50)

Чтобы возникло ферромагнитное состояние общее суммарное изменение энергии должно быть отрицательное, т.е.

$$2|\varepsilon_{o\delta M}|v^2 \phi v \delta E. \tag{3.51}$$

Можно считать, что у поверхности Ферми $\nu \cong \frac{1}{2}G(E_F)\delta E$ и тогда условие возникновения ферромагнетизма сводится к выполнению неравенства

$$G(E_F)\mathcal{E}_{o\delta M} \neq 1. \tag{3.52}$$

Таким образом для возникновения ферромагнетизма необходимо : 1) высокая плотность состояний вблизи уровня Ферми и 2) большая отрицательная обменная

энергия. Первое условие выполняется лучше при узкой 3d-полосе. У переходных металлов 3d-группы в начале ряда 3d-полоса более широкая и сильно гибридизирована с 4s- и 4p-полосами, а величина ε_{обм.} ближе к значениям для свободных электронов. В конце ряда (Fe, Co, Ni) 3d-полоса уже менее гибридизирована, ε_{обм.} сравнительно велико и ближе к величине, характерной для изолированного атома. Все это способствует возникновению ферромагнетизма у этих металлов. Модель Стонера является очень упрощенной. Предполагается однородное распределение компонент спина в пространстве, тогда как в действительности имеется определенная локализация. Следует отметить, что кристаллы Сг и α-Мп являются антиферромагнетиками.

§ 3.5. Обменное взаимодействие в металлах редких земель

У атомов редких земель не полностью заполненная 4f-оболочка является внутренней и перекрытия волновых функций 4f-электронов, принадлежащих соседним атомам, практически нет. Поэтому связующим звеном служат электроны проводимости. Впервые идея обменной связи между локализованными магнитными электронными оболочками через электроны проводимости была высказана Шубиным и Вонсовским (1934 г.). В дальнейшем эти представления применительно к редким землям (s-f - модель) развивались Зинером (1951 г.), а также Рудеманом, Киттелем , Касуя и Иосида (1954-1957 гг.). Разработанная ими модель получила название РККИ -обмен.

Рассмотрим кратко расчет s-f -взаимодействия, сделанный Зинером в рамках приближения молекулярного поля. Энергии взаимодействия, приходящиеся на один узел, запишем в виде $-\frac{J_{ff}m_f^2}{2}$ для f - f -взаимодействия, $-J_{sf}m_fm_s$ для s - f - взаимодействия. Здесь J_{ff} , J_{sf} - соответствующие энергетические параметры взаимодействия, аналогичные константам молекулярного поля; m_f и m_s - средняя относительная намагниченность f - и s- электронов. s- электроны считаются сами по себе парамагнитными и тогда энергия, затраченная на их намагничивание, равна

 $\frac{1}{2}M_sH = \frac{1}{2} \cdot \frac{M_s^2}{\chi_n}$. Обозначая плотность электронов через N, считая $M_s = \mu_B m_s N$ и

заменяя χ_{π} по формуле (2.41) за вычетом диамагнетизма, окончательно для энергии, затраченной на намагничивание s- электронов и приходящейся на один узел, получим

$$\frac{M_s^2}{2N\chi_n} = \frac{\mu_B^2 m_s^2 N^2 E_F}{2N\mu_B^2 N} = \frac{m_s^2 E_F}{2}.$$

Если записать эту энергию в виде $\frac{Jm_s^2}{2}$, то получим, что J ~ E_F.

Обменные энергии отрицательные, энергия, затраченная на намагничивание sэлектронов положительная, и тогда для полной энергии имеем

$$E(m_s, m_f) = -\frac{1}{2} J_{ff} m_f^2 - J_{sf} m_s m_f + \frac{1}{2} J m_s^2.$$
(3.53)

Минимум этой энергии при условии $|m_f| \le m_{f \text{ макс.}}$ и $|m_s| \le m_{s \text{ макс.}}$ имеет место при

$$m_f = m_{f_{MAKC.}} \quad \mathbf{M} \quad m_s = \frac{J_{sf}}{J} m_f. \tag{3.54}$$

Обычно $J_{sf} \approx 10^{-14} \div 10^{-13}$ эрг , $J \sim E_F \approx 10^{-11} \div 10^{-12}$ эрг и , следовательно , J_{sf}

 $\frac{J_{sf}}{J} \approx 0,1 \div 0,01$. Таким образом подмагничивание парамагнитных s- электронов дает намагниченность, составляющую $1 \div 10$ % намагниченности f- электронов. Подставив (3.54) в (3.53), получим

$$E_{_{MUH.}}(m_{_{f}}) = -\frac{1}{2} \left(J_{_{ff}} + \frac{J_{_{sf}}^2}{J} \right) m_{_{f}}^2.$$
(3.55)

То , что стоит в скобках , соответствует эффективному параметру обменного взаимодействия 4f- электронов $J_{\rm ff\, э \varphi \varphi}$:

$$J_{ff = \phi \phi} = J_{ff} + \frac{J_{sf}^2}{J}.$$
 (3.56)

Второй член соответствует косвенной обменной связи с интегралом обмена

$$J_{\text{KOCG.}} = \frac{J_{sf}^2}{J} \approx \frac{J_{sf}^2}{E_F}.$$
(3.57)

J_{косв.} всегда положителен и поэтому s - f - взаимодействие способствует ферромагнетизму . Критерием ферромагнетизма является выполнение условия

$$J_{ff} + \frac{J_{sf}^2}{E_F} \phi \ 0. \tag{3.58}$$

Если считать, что $J_{\rm ff}\approx 0$ из за малого перекрытия 4f- оболочек атомов, то магнитное упорядочение обусловлено s - f взаимодействием и , следовательно ,

$$rac{J_{sf}^2}{E_F} \sim kT_C$$
. Откуда $J_{sf} pprox \left(kT_C E_F
ight)^{rac{1}{2}}$

и упорядочение ферромагнитное. Более точные расчеты, результаты которых и получили название РККИ - взаимодействия, показали, что благодаря участию электронов проводимости взаимодействие между редкоземельными атомами является дальнодействующим, т.е. убывающим с расстоянием не по экспоненциальному, а по степенному закону. Кроме того, взаимодействие носит осциллирующий характер, т.е. с расстоянием периодически меняется знак, что приводит к образованию сложных магнитных структур геликоидальных или синусоидальных, которые приведены на рис.29. Геликоидальные структуры делятся на ферромагнитные с наличием результирующего магнитного момента и антиферромагнитные. Следует заметить, что кристаллическая решетка почти у всех редкоземельных металлов гексагональная с плотной упаковкой. Исключением является только Sm, решетка у которого ромбоэдрическая, а также Еu и Yb,

(3.59)

имеющие соответственно объемоцентрированную и гранецентрированную решетки

- а) простой антиферромагнитный геликоид;
- б) ферромагнитный геликоид;
- в) синусоидальная структура;
- г) циклоидальный геликоид.

В случае ферромагнитного геликоида (рис.29б) магнитные моменты атомов при переходе от слоя к слою в кристаллической решетке поворачиваются вокруг выделенной оси так, что их проекция на эту ось не изменяется, а проекция на базисную плоскость равномерно вращается. В случае антиферромагнитного геликоида магнитные моменты либо лежат в базисной плоскости и равномерно вращаются (простой антиферромагнитный геликоид рис.29а), либо проекция магнитного момента на базисную плоскость вращается, а проекция магнитного момента на базисную плоскость вращается, а проекция на выделенную ось периодически меняет направление (циклоидальный геликоид рис.29г). При синусоидальной структуре (рис.29в) периодически изменяется величина и направление магнитных моментов, но они остаются коллинеарными относительно выделенной оси. Периоды магнитной и кристаллографической структур в общем случае не совпадают, не совпадают также периоды вращения проекции магнитных моментов на базисную плоскость и изменений проекции на выделенную ось.

Качественно образование простой геликоидальной структуры можно представить как конкуренцию трех взаимодействий : ферромагнитного между атомами в соседних слоях, антиферромагнитного между атомами в плоскостях, следующих за ближайшими и одноосной кристаллографической анизотропией (этот вид взаимодействия будет рассмотрен в гл.4), старающейся уложить магнитные моменты в базисную плоскость.

Экспериментальные данные о температурах перехода в состояния с ферро- или антиферромагнитным упорядочением для всех редкоземельных металлов представлены на рис.30, а в табл.3.1 для металлов "тяжелых" редких земель (от Gd до Tm) приведены реализующиеся магнитные структуры и области температур их существования.

Характерным является низкие температуры антиферромагнитного упорядочения у той части редких земель, у которых происходит заполнение первой половины 4f-оболочки. Резкий скачек имеет место у Gd, который ферромагнетик, и далее с увеличением числа 4f-электронов температура магнитного упорядочения падает, а самой низкотемпературной фазой является ферромагнитная. Вообще можно отметить, что положительная парамагнитная точка Кюри у "тяжелых" редких земель свидетельствует о преобладании ферромагнитной связи между магнитными моментами.

Таблица 3.1

Gd	T<298K, коллинеарный ферромагнетик				
Tb	T< 219К, коллинеарны	ый	219К < T < 230К, антиферромагнитный		
	ферромагнетик		геликоид		
Dy	T<85К, коллинеарный		85К < T < 179К, антиферромагнитный		
-	ферромагнетик		геликоид		
Но	T< 20К, ферромагнитный		20К < T < 133К, антиферромагнитный		
	геликоид		геликоид		
Er	Т<20К,	20К < T < 50К, циклоидная		50К < T < 85К ,	
	ферромагнитный	структура		синусоидальная	
	геликоид			структура	
Tm	T < 20К, коллинеарный		20К < T < 60К, синусоидальная		
	ферромагнетик		структура		

Температуры магнитных фазовых переходов и магнитные структуры в ряду редкоземельных металлов от Gd до Tm

- 2 температура перехода в антиферромагнитное состояние,
- 3 температура перехода в ферромагнитное состояние.

§ 3.6. Косвенное обменное взаимодействие

Большинство веществ, обладающих магнитным упорядочением ниже некоторой температуры, не металлы, а диэлектрики или полупроводники. Атомы с магнитным моментом в кристаллической решетке таких соединений не являются ближайшими соседями, их разделяют анионы. Поэтому прямого перекрытия 3d-или 4f- волновых функций нет и, следовательно, роль прямого обменного взаимодействия ничтожна, также как и косвенного обменного взаимодействия через электроны проводимости. Обменное взаимодействие в таких случаях осуществляется через электроны анионов и называется косвенным обменным взаимодействием или, чтобы его отличить от взаимодействие через электроны проводимости, сверхобменом или реже суперобменом.

Модель косвенного обменного взаимодействия через анионы была предложена Крамерсом (1934 г.) и наиболее полно разработана Андерсоном [7]. Основную идею Крамерса можно продемонстрировать на примере гипотетической цепочки из 3-х ионов $M_1 - O^2 - M_2$. M_1 и M_2 два катиона переходного металла, у каждого из которых один электрон на d- оболочке. Между катионами находится ион кислорода с двумя электронами на p- оболочке (180^0 - связь). В основном состоянии все упомянутые электроны локализованы на своих ионах. Что касается их спинов, то у ионов кислорода они спарены, а у катионов никак не скоррелированы ни между собой, ни со спинами электронов кислорода.

- Рис.31. Схематическое изображение косвенного обменного взаимодействия по Крамерсу Андерсону :
 - a) возбужденное состояние при заполнении 3d-оболочки катионов меньше чем на половину,
 - б) возбужденное состояние при заполнении 3d-оболочки катионов на половину и более

Далее предполагается, что возможно возбужденное состояние, при котором один из p- электронов кислорода переходит на d- оболочку, скажем, катиона M_2 (puc.31a). Благодаря сильному внутриатомному обменному взаимодействию по правилу Хунда спины теперь уже двух d- электронов катиона M_2 должны быть параллельны. Оставшийся неспаренный p- электрон на ионе кислорода вступает в антиферромагнитное обменное взаимодействие с d- электроном катиона M_1 и таким образом спины катионов M_1 и M_2 оказываются скоррелированными друг с другом ферромагнитно, что можно трактовать, как косвенную обменную связь. Очевидно, что спины d- электронов будут пераллельны, если d- оболочки катионов заполнены меньше чем наполовину. Если заполнение наполовину или больше, то спин перешедшего p- электрона будет ориентирован антипараллельно суммарному

спину d- электронов катиона M_2 , что приведет к антипараллельности спинов dэлектронов на катионах M_1 и M_2 , т.е. к антиферромагнитному косвенному обменному взаимодействию (рис.31б). При такой трактовке связи волновая функция системы должна быть суперпозицией волновых функций основного и возбужденного состояний.

Предлагался учет и других возбужденных состояний. Например, так называемый поляризационный эффект, который заключается в спиновой поляризации электронной оболочки аниона. При отсутствии взаимодействия с катионами центры тяжести р-электронов аниона с противоположно напрвленными спинами совпадают. При наличии катионов с d-электронами из-за обменного взаимодействия между р- и d-электронами потенциальная энергия электронов понижается, если их спины параллельны. Это приводит к оттягиванию р-электронов с соответствующей ориентацией спинов к катионам. Центры тяжести электронов с противоположными спинами уже не совпадают при этом из-за антипараллельности спинов р-электронов спины d-электронов оказываются скоррелированными антиферромагнитно. Поляризационный эффект не велик и им обычно пренебрегают.

Рассматривался и механизм образования косвенной обменной связи за счет одновременного перехода двух электронов аниона на оба соседних катиона, например, переход Mn^{2+} - O^{2-} - Mn^{2+} в возбужденное состояние Mn^+ - O - Mn^+ .

Как показали расчеты в теории обменного взаимодействия Крамерса-Андерсона абсолютная величина эффективного обменного интеграла пропорциональна квадрату интеграла переноса электрона между р-орбиталью кислорода и возбужденной dорбиталью катиона. Отсюда следует важный вывод - так как элементы p- и dорбиталей имеют форму вытянутых лепестков (гантелей), то интеграл переноса будет наибольший, когда ионы лежат на одной прямой (180⁰ - связь), т.е. когда перекрытие волновых функций наибольшее, второй вывод, который следует из теории это чем больше электроотрицательность аниона, тем меньше перекрытие волновых функций его электронов с волновыми функциями соседних катионов. Отсюда следует, что например, в ряду халькогенидов MnO, MnS, MnSe, MnTe, в котором электроотрицательность анионов уменьшается, косвенное обменное взаимодействие усиливается. Это действительно наблюдается, хотя есть примеры, когда это привило и не выполняется. Следует отметить, что зависимость характера косвенного обменного взаимодействия от заполнения 3d-оболочки также не всегда определяется по тому правилу, которое следует из рассмотренной простой модели.

Вообще анизотропный характер 3d- орбит магнитных катионов и p- орбит анионов приводит к зависимости перекрытия их волновых функций от взаимной ориентации орбит. Такие возможные ориентации при 180^{0} - связи приведены на puc.32. Из puc.32 видно, что интегралы перекрытия орбиталей, соответствующих уровню e_{g} , с орбиталями p_{π} (puc.32a) и орбиталей, сответствующих уровню t_{2g} , с орбиталями p_{σ} (puc.32г) равны нулю, что означает взаимную ортогональность этих пар орбит. Таким образом, при 180^{0} - связях возможно перекрытие $e_{g} - p_{\sigma}$ и $t_{2g} - p_{\pi}$ - орбит, т.е. σ - и π - связи, при этом перекрытие при σ - связи существенно больше, чем при π - связи.

Учет анизотропного характера орбиталей в сочетании с экспериментальными данными по характеру магнитного упорядочения в соединениях с различными 3dионами позволили Гуденафу [8] и Канамори [9] сформулировать правила косвенного обменного взаимодействия. В дальнейшем эти полуэмпирические

Рис. 32 Примеры взаимной ориентации 3d-орбит катионов и р-орбит анионов при 180°-ой связи. 5 - интеграл перекрытия.

правила нашли подтверждение в теории развитой Андерсоном. Правила Гуденафа-Канамори с учетом дополнений Андерсона [10] формулируются следующим образом : 1) Атиферромагнитное взаимодействие имеет место, если два катиона имеют наполовину заполненные орбиты, которые перекрываются с одной и той же промежуточной орбитой аниона. При октаэдрическом окружении это имеет место в следующих трех случаях :

а) При 180⁰- связи, когда наполовину заполненными орбитами являются орбиты е_g- типа и взаимодействие осуществляется через σ- связь. В этом случае антиферромагнитное взаимодействие особенно сильное. Схематически этот случай изображен на рис.33а.

б) При 180⁰- связи, когда наполовину заполнены орбиты t_{2g}- типа и взаимодействие осуществляется через π- связи (рис.33б). Такое антиферромагнитное взаимодействие слабее, чем в первом случае, так как меньше перекрытие волновых функций катионов и анионов.

в) При 90⁰- связи, когда наполовину заполненные орбиты у одного катиона e_g - типа, а у другого t_{2g} - типа (рис.33г). В этом случае одна и та же орбита промежуточного аниона является для первого катиона p_{σ} , а для второго p_{π} .

 Ферромагнитное взаимодействие имеет место, если наполовину заполненные орбиты расположены так, что не дают отличного от нуля интеграла перекрытия с одной и той же орбитой промежуточного аниона из-за их ортогональности.

Рис. 33. Иллюстрация косвенных 180⁹-ых (а,б,в) и 90⁹-ых (г,д,е) взаимодействий Черточка вместо лепестка означает незаполненную орбиту.

Это взаимодействие обычно слабее антиферромагнитного и в случае октаэдрических комплексов имеет место в следующих случаях :

а) При 180° -связи, если у одного катиона наполовину заполнена орбита e_g -типа, а у другого t_{2g} - типа, т.е. с одной стороны σ - связь, а с другой π - связь (рис.33в).

б) При 90⁰- связи, если у обоих катионов наполовину заполнены орбиты одного и того же типа, т.е. e_g и e_g (рис.33д) или t_{2g} и t_{2g} (рис.33е). В этом случае связь σ - σ или π - π . 90⁰- взаимодействие слабее 180⁰- взаимодействия.

Обменное взаимодействие между магнитными катионами, находящимися в октаэдрах, удобно проиллюстрировать на примере соединений, имеющих структуру типа перовскита, в которой 3d-ионы (ионы B на рис.34) расположены в центре октаэдров, в вершинах которых находятся иона кислорода или фтора. Обычно соединения с этой структурой имеют элементарную ячейку либо кубическую, либо несколько искаженную, чаще всего ромбическую и, строго говоря, в этом случае, определяющее обменное взаимодействие не совсем 180⁰- ое, но это, как правило, мало отражается на характере взаимодействия. Зная распределение 3d-электронов по орбиталям t_{2g} и e_g типов для переходных элементов группы железа, можно сопоставить экспериментальные данные о магнитных структурах с правилами Гуденафа - Канамори - Андерсона.

В соединениях YFeO₃, LaFeO₃, FeF₃, CoF₃ ионы железа трехвалентные и на половину заполнены как t_{2g} так и e_g - орбиты. Лепестки e_g - орбит располагаются так, как это показано на рис.35а. Поэтому магнитную структуру определяет в первую очередь наиболее сильное антиферромагнитное взаимодействие по правилу 1а. В этом случае у каждого магнитного иона ближайший магнитный сосед имеет

Рис. 34. Структура типа перовскита.

Рис.35. Расположение е_в-орбиталей 3d-катиона в структуре перовскита : а) при электронной конфигурации 3d⁵ и 3d⁶, б) при электронной конфигурации 3d⁴.

противоположное направление магнитного момента. Такая же магнитная структура у LaCrO₃, CaMnO₃ и CrFe₃. eg-орбиты у 3d-ионов в этих соединениях не заняты и взаимодействие осуществляется по правилу 1б и является антиферромагнитным. В случае LaMnO₃ у Mn³⁺ в eg-состоянии находится один электрон. Считается, что из-за искажения элементарной ячейки вырождение этого уровня снимается и электрон находится на d_{z^2} -орбите, при этом происходит упорядочение в расположении лепестков этих орбит, как это показано на рис.356. Таким образом

в горизонтальных плоскостях связь близкая к 180⁰-ой через анион соответствует правилу 2a и является ферромагнитной, а между горизонтальными плоскостями соответствует правилу 1б и антиферромагнитная.

§ 3.7. Антиферромагнетики

Как мы видели, обменное взаимодействие может быть как ферромагнитным, так и антиферромагнитным, требующим антипараллельной ориентации магнитных моментов взаимодействующих атомов. Если антиферромагнитное взаимодействие является определяющим, то магнитное упорядочение может быть таким, что макроскопическая намагниченность будет равна нулю. Вещества с таким магнитным упрядочением называются антиферромагнетиками. Предположение о возможности существования таких магнитных структур впервые было сделано Ландау [11], который предположил, что в галлоидных солях 3d- элементов, имеющих слоистую кристаллическую структуру, в слоях между магнитными атомами взаимодействие ферромагнитное и магнитные моменты ионов параллельны, а между слоями антиферромагнитное и магнитные моменты слоев антипараллельны. Таким образом суммарная намагниченность равна нулю.

У антиферромагнетиков при возникновении магнитного упорядочения обычно имеют место максимумы магнитной восприимчивости, теплоемкости и другие аномалии, характерные для фазового перехода второго рода. Хотя такого рода аномалии на температурных зависимостях наблюдались у многих соединений, экспериментальные доказательства антиферромагнитного однако прямые упорядочения были получены только при нейтронографических исследованиях Шаллом и др. [12,13]. Наличие магнитного момента у нейтрона приводит к взаимодействию нейтрона с магнитными моментами атомов в кристаллической решетке. Благодаря такому взаимодействию поток монохроматических нейтронов испытывает дифракцию не только на периодически расположенных в пространстве атомных ядрах, но и на периодически расположенных магнитных моментах. Магнитное рассеяние сравнимо с рассеянием на ядрах, поэтому рефлексы от магнитного рассеяния близки по величине к рефлексам от рассеяния на ядрах. То, что так называемые магнитные рефлексы связаны с магнитным упрядочением легко проверяется - выше температуры магнитного упорядочения они не наблюдаются. Это иллюстрируют приведенные на рис.36 нейтронограммы MnO. Магнитная структура этого окисла, полученная на основании нейтронограммы, рис.37. Оказалось, антиферромагнетизм явление очень приведена на что распространенное. Практически всегда при концентрации атомов 3d- металлов в кристаллах такой, при которой обменное взаимодействие осуществляется через 1 -2 аниона, происходит антиферромагнитное упорядочение. Антиферромагнетиками являются и некоторые 3d- металлы это хром и марганец, а также, как уже упоминалось, ряд редких земель. Некоторые из антиферромагнетиков приведены в табл 32

Рис. 36. Нейтронограммы МпО при температурах выше (T=293 K) и ниже (T=80 K) точки Нееля [12].

Рис. 37. Магнитная структура MnO. Стрелками показаны направления магнитных моментов .

Вещество	T_N , 0K	θ_a , 0K
MnO	116	- 610
MnS	165	- 528
MnF_2	67	- 82
MnF_3	47	8
$RbMnF_3$	55	- 190
FeF ₂	79	- 117
FeCl ₂	24	48
FeO	198	- 570
FeSO ₄	21	- 30,5
CoO	291	- 330
CoF ₂	37,7	- 52,7
NiO	525	- 2470
NiCl ₂	52	67
KNiF ₃	253	- 843
KCuF ₃	220	- 355
CuSO ₄	34,5	- 77,5
CuF ₂ ·2H ₂ O	26	- 37
Cr_2O_3	307	-485
		-

Таблица 3.2 Некоторые антиферромагнетики

Магнитная система антиферромагнетика состоит из двух или более так называемых магнитных подрешеток, каждая из которых состоит из атомов, магнитные моменты которых параллельны, но векторная сумма намагниченностей подрешеток равна нулю. Наиболее простым случаем является коллинеарная структура, при которой намагниченности подрешеток коллинеарны и делятся на антипараллельные пары.

3.7.1. Теория молекулярного поля

Теория антиферромагнетика с двумя магнитными подрешетками в приближении теории молекулярного поля была создана Неелем [14]. Пусть атомы A и B образуют простую кубическую решетку (рис.38) и магнитные моменты атомов A направлены в одну сторону, а атомов B в противоположную, что отражено на рис.38 знаками (+) и (-). Считаем, что атомы A и B отличаются только направлением магнитного момента. Намагниченности подрешеток обозначим через M_A и M_B . Предполагается, что молекулярные поля, действующие на ионы, являются суммой двух полей, пропорциональных одно M_A , а другое M_B . Таким образом для молекулярных полей, действующих на ионы A (H_{mA}) и ионы B (H_{mB}), в самом общем виде можно написать

$$\mathbf{H}_{mA} = w_{AA} \mathbf{M}_{A} + w_{AB} \mathbf{M}_{B},$$

$$\mathbf{H}_{mB} = w_{BA} \mathbf{M}_{A} + w_{BB} \mathbf{M}_{B}.$$
(3.60)

Будем считать, что узлы, в которых находятся ионы A и B, эквивалентны поэтому $w_{AA} = w_{BB} = w_1$. Естественно также считать, что $w_{AB} = w_{BA} = w_2$. Так как рассматривается антиферромагнетик, то $M_A = -M_B$. Учитывая все это, равенства (3.60) запишутся в виде

$$\mathbf{H}_{mA} = (w_1 - w_2) \mathbf{M}_A,$$

$$\mathbf{H}_{mB} = (w_1 - w_2) \mathbf{M}_B.$$
(3.61)

Коэффициент $w_2 < 0$ и $|w_2| >> w_1$, т.к. атомы своей подрешетки находятся во второй координационной сфере и взаимодействие между ними слабее, чем между атомами, находящимися в разных подрешетках. Выражения для молекулярных полей аналогичны формуле (3.1) для ферромагнетика, поэтому, используя эту аналогию, вместо (3.2) для намагниченностей подрешеток можно сразу написать

$$M_{A} = \frac{1}{2} \mu NL \left[\frac{\mu (w_{1} - w_{2}) M_{A}}{kT} \right],$$

$$M_{B} = \frac{1}{2} \mu NL \left[\frac{\mu (w_{1} - w_{2}) M_{B}}{kT} \right].$$
(3.62)

Здесь µ- магнитный момент иона и N- число магнитных ионов в единице объема. Намагниченность подрешеток можно было выразить и через функцию Бриллюэна. Температурные зависимости намагниченностей подрешеток, получающиеся из

Рис.38. Пример простой кубической антиферромагнитной решетки. Магнитные моменты атомов А и В направлены в противоположные стороны.

решения уравнений (3.62) имеют тот же характер, что и температурная зависимость спонтанной намагниченности ферромагнетика (рис.22). Температура, при которой появляется намагниченность подрешеток, называется температурой или точкой Нееля (T_N). Ее можно найти тем же путем, что и температуру Кюри ферромагнетика и по аналогии с (3.12) имеем

$$T_N = \frac{\mu^2 N(w_1 - w_2)}{6k}.$$
 (3.63)

Рассмотрим теперь температурную зависимость магнитной восприимчивости. При приложении магнитного поля вдоль намагниченностей подрешеток их намагниченности уже не будут одинаковы по величине и вместо выражений (3.62) следует написать

$$M_{A} = \frac{1}{2} \mu NL \left[\frac{\mu (H + w_{1} M_{A} + w_{2} M_{B})}{kT} \right],$$

$$M_{B} = \frac{1}{2} \mu NL \left[\frac{\mu (H + w_{2} M_{A} + w_{1} M_{B})}{kT} \right].$$
(3.64)

Здесь считалось, что поле направлено по положительному направлению. Продифференцируем эти уравнения по Н

$$\frac{\partial M_{A}}{\partial H} = \frac{1}{2} \cdot \frac{\mu^{2} N}{kT} L'(\alpha_{1}) \left(1 + w_{1} \frac{\partial M_{A}}{\partial H} + w_{2} \frac{\partial M_{B}}{\partial H} \right),$$

$$\frac{\partial M_{B}}{\partial H} = \frac{1}{2} \cdot \frac{\mu^{2} N}{kT} L'(\alpha_{2}) \left(1 + w_{2} \frac{\partial M_{A}}{\partial H} + w_{1} \frac{\partial M_{B}}{\partial H} \right).$$
(3.65)

Здесь α_1 и α_2 - аргументы функций Ланжевена (3.64) соответственно для A и B подрешеток. Сложив уравнения (3.65), получим выражение для восприимчивости

$$\chi = \frac{\partial M}{\partial H} = \frac{\partial \left(M_A + M_B\right)}{\partial H} = \frac{\mu^2 N}{2kT} L' \left(\alpha_i\right) \left[2 + \left(w_1 + w_2\right) \frac{\partial M_A}{\partial H} + \left(w_1 + w_2\right) \frac{\partial M_B}{\partial H}\right].$$
(3.66)

Рассмотрим теперь парамагнитную область температур. Поскольку здесь $\alpha_i \ll 1$, то в разложениях функции Ланжевена (2.24) можно оставить только первый член и тогда $L'(\alpha_i) = 1/3$. Подставляя это значение $L'(\alpha_i)$ в (3.66) и разрешая относительно χ , получим

$$\chi = \frac{\mu^2 N}{3k(T - \theta_a)} = \frac{C}{T - \theta_a},$$
(3.67)

где
$$\theta_a = \frac{\mu^2 N(w_1 + w_2)}{6k}$$
 и $C = \frac{\mu^2 N}{3k}$. (3.68)

 θ_a называется асимптотической или парамагнитной точкой Кюри. Получилась зависимость аналогичная закону Кюри - Вейсса для ферромагнетиков, но поскольку $w_2 < 0$ и $|w_2| > w_1$, то $\theta_a < 0$. Подставив (3.63) и (3.68) в (3.67) получим, что в точке Нееля $\chi = -\frac{1}{w_2}$.

Закон Кюри для парамагнетиков и законы Кюри - Вейсса для ферро- и антиферромагнетиков можно рассматривать, как единый закон Кюри. Различие только в том, что у ферромагнетиков благодаря положительному коэффициенту молекулярного поля эффективная температура понижается, а у антиферромагнетиков из-за превалирующего влияния отрицательного молекулярного поля со стороны другой подрешетки эффективная температура повышается. Другими словами, если в случае ферромагнетиков обменное взаимодействие стремится все магнитные моменты сделать параллельными, т.е. увеличить восприимчивость, то в случае антиферромагнетиков обменное взаимодействие стремится обратить намагниченность в ноль и, следовательно, восприимчивость уменьшить. Из формул (3.63) и (3.68) следует, что

$$\frac{\theta_a}{T_N} = \frac{w_1 + w_2}{w_1 - w_2}.$$
(3.69)

Отсюда видно, что $|\theta_a| = T_N$, если $w_1 << |w_2|$, т.е. если влияние своей подрешетки пренебрежимо мало. В общем случае $|\theta_a|$ может быть и меньше и больше T_N .

Если взаимодействие со своей подрешеткой ферромагнитное, то с его ростом $|\theta_a|$ уменьшается, если же антиферромагнитное, то увеличивается.

Рис. 39. Направления намагниченностей двухподрешеточного антиферромагнетика при поле, приложенном параллельно (а) и перпендикулярно (б) антиферромагнитной оси .

Ниже точки Нееля необходимо различать восприимчивость в поле перпендикулярном (χ_{\perp}) и параллельном (χ_{\parallel}) атиферромагнитной оси. Эти ситуации схематически изображены на рис.39. Если поле приложено перпендикулярно антиферромагнитной оси (рис.39а), то магнитные моменты ионов, а, следовательно, и намагниченности подрешеток повернутся к оси *x* и для компонент молекулярного поля, действующего на ионы А - подрешетки, можно написать следующие уравнения

Так как подрешетки симметричны, то

$$M_{Bx} = M_{Ax}; M_{By} = -M_{Ay}.$$
(3.71)

Учитывая (3.71), уравнения (3.70) перепишутся в виде

$$(\mathbf{H}_{mA})_{x} = (w_{1} + w_{2})M_{Ax}, (\mathbf{H}_{mA})_{y} = (w_{1} - w_{2})M_{Ay}.$$
 (3.72)

Отношение M_{Ax}/M_{Ay} равно отношению полей, действующих соответственно вдоль осей x и y. Так как вдоль оси y действует помимо молекулярного и внешнее поле, то для отношения компонент намагниченностей имеем

$$\frac{M_{Ax}}{M_{Ay}} = \frac{H + (\mathbf{H}_{mA})_x}{(\mathbf{H}_{mA})_y} = \frac{H + (w_1 + w_2)M_{Ax}}{(w_1 - w_2)M_{Ay}}.$$
(3.73)

Решая это уравнение относительно МАх, получим

$$M_{Ax} = -\frac{H}{2w_2}.$$
 (3.74)

Учитывая (3.71) для х⊥, имеем

$$\chi_{\perp} = \frac{M_{Ax} + M_{Bx}}{H} = -\frac{1}{w_2}.$$
(3.75)

Таким образом χ_{\perp} не зависит от температуры.

Рассмотрим теперь χ_{\parallel} . В этом случае, решая (3.66) относительно восприимчивости и учитывая (3.68), получим

$$\chi_{\uparrow\uparrow} = \frac{3CL'(\alpha)}{T - 3L'(\alpha)\theta_a}.$$
(3.76)

Найдем чему равно χ_{\parallel} при $T \to 0$, используя правило Лапиталя ,

$$\lim \chi_{\parallel} = \lim \frac{3CL''(\alpha)\partial\alpha / \partial T}{1 - 3L''(\alpha)\theta_a \partial\alpha / \partial T} = 0.$$
(3.77)
T $\rightarrow 0$ T $\rightarrow 0$

В формулах (3.76) и (3.77) необходимо использовать полное выражение для функции Ланжевена, т.е. (2.23). На рис.40 представлены графики температурных зависимостей магнитной восприимчивости в парамагнитной и антиферромагнитной фазах.

Независимость от температуры χ_{\perp} и обращение в ноль χ_{\parallel} при T \rightarrow 0 можно объяснить, исходя из самых общих соображений. При антиферромагнитном упорядочении на магнитные атомы в A и B подрешетках действуют сильные обменные поля, направленные в противоположные стороны. Если внешнее поле прикладывается перпендикулярно антиферромагнитной оси, то, как уже отмечалось, его действие сводится к небольшому повороту магнитных моментов атомов при этом, так как оно много меньше обменного поля, практически при всех температурах ниже точки Нееля эффект от его воздействия не зависит от

Рис. 40. Температурная зависимость χ и 1/χ в парамагнитной области, а также χ_⊥ и χ_∥ двухподрешеточного антиферромагнетика.

температуры. В случае приложения внешнего поля параллельно антиферромагнитной оси в представлении молекулярного поля постоянства магнитного момента атомов возникновение намагниченности может быть связано также с поворотом магнитных моментов атомов, но в данном случае поворот обусловлен взаимодействием поля с компонентой магнитных моментов, перпендикулярной антиферромагнитной оси. По мере понижения температуры средняя величина этой компоненты уменьшается и обращается в ноль при T = 0, когда достигается полное упорядочение. Взаимодействие поля с компонентами, направленными по и против поля соответственно атомов одной и другой подрешеток, не дает вклада в намагниченность, так как, во-первых, внешнее поле на много порядков меньше обменного и, во-вторых, изменения величин этих компонент намагниченности имеют противоположные знаки.

3.7.2. Термодинамическая теория

Для теоретического рассмотрения антиферромагнетиков с успехом применима термодинамическая теория. Как было показано Ландау, по известной симметрии кристалла при температурах выше точки фазового перехода второго рода можно определить возможные классы симметрии в низкотемпературной упорядоченной фазе. Применительно к антиферромагнетикам такое рассмотрение было успешно развито Дзялошинским [15]. Считается, что магнитные моменты атомов (S_i)

локализованы и вблизи точки фазового перехода термодинамический потенциал Φ можно разложить в ряд по степеням компонент векторов S_i . При этом войдут только четные степени, так как Φ должен быть инвариантным относительно изменения направления всех векторов S_i на обратное. Кроме того разложение должно быть инвариантным относительно всех преобразований пространственной группы кристалла. Минимум Φ соответствует равновесным S_i , т.е. стабильной магнитной структуре кристалла.

Рассмотрим простейший случай - одноосный антиферромагнетик с двумя магнитными подрешетками в элементарной ячейке. Термодинамический потенциал удобно записать в виде разложения по степеням компонентов векторов

$$\mathbf{I} = \mathbf{S}_1 - \mathbf{S}_2 \quad \mathbf{M} \quad \mathbf{m} = \mathbf{S}_1 + \mathbf{S}_2 , \qquad (3.78)$$

которые преобразуются независимо при всех операциях симметрии пространственной группы кристалла. Очевидно, что **m** - средний магнитный момент элементарной ячейки, а вектор **l** называется вектором антиферромагнетизма или антиферромагнитным вектором .Вблизи точки фазового перехода **l** и **m** малы и в разложении Ф достаточно учесть только члены второго порядка и добавим еще один член четвертого порядка с **l**⁴, поскольку l >> m. Таким образом можно написать

$$\Phi = \frac{A}{2}\mathbf{l}^{2} + \frac{B}{2}\mathbf{m}^{2} + \frac{a}{2}m_{z}^{2} + \frac{b}{2}l_{z}^{2} + \frac{C}{4}\mathbf{l}^{4} - \mathbf{mH}.$$
 (3.79)

Члены, не зависящие от ориентации векторов **l** и **m** (следовательно $S_1 u S_2$) относительно кристаллографических осей кристалла, соответствуют обменной энергии, третий и четвертый члены представляют энергию анизотропии, природа которой будет рассмотрена в гл.4. и, наконец, последний член представляет энергию во внешнем поле. Условия минимума Ф приводят к следующим уравнениям:

$$\frac{\partial \Phi}{\partial l_x} = (A + Cl^2)l_x = 0,$$

$$\frac{\partial \Phi}{\partial l_y} = (A + Cl^2)l_y = 0,$$

$$\frac{\partial \Phi}{\partial l_z} = (A + b + Cl^2)l_z = 0.$$
(3.80)

Отсюда возможны два решения , соответствующие двум состояниям

$$1)l_{z} \neq 0; l_{x} = l_{y} = 0;$$

$$l^{2} = -\frac{A+b}{C}, \Phi_{1} = -\frac{(A+b)^{2}}{2C}.$$

$$2)l_{z} = 0;$$

$$l^{2} = -\frac{A}{C}, \Phi_{2} = -\frac{A^{2}}{4C}.$$
(3.81)

В парамагнитной области минимуму Ф соответствует $\mathbf{m} = \mathbf{l} = 0$, поэтому A > 0 и B > 0. Ниже точки перехода B > 0, так как иначе кристалл был бы ферромагнитным, а A < 0. Из сравнения Φ_1 и Φ_2 из (3.81) следует, что ориентация вектора антиферромагнетизма по выбранной оси (z) или в плоскости, к ней перпендикулярной, зависит от знака b. При b<0 l ориентирован вдоль оси, при b>0 к ней перпендикулярно. В точке фазового перехода коэффициент A (или A + b, но |A| >> |b|) обращается в ноль, поэтому его можно разложить в ряд по степеням $(T - T_N)$ и, если ограничиться первым членом, то

$$A = \lambda (T - T_N). \tag{3.82}$$

Откуда, учитывая (3.81), получим температурную зависимость намагниченностей подрешеток

$$l = \left[\frac{\lambda}{C} \left(T_N - T\right)\right]^{\frac{1}{2}}.$$
(3.83)

В парамагнитной области l = 0 и минимизация потенциала (3.79) при $H \neq 0$ по трем компонентам **m** приводит к следующим формулам :

$$m_x = \frac{H_x}{B}; m_y = \frac{H_y}{B}; m_z = \frac{H_z}{B+a}.$$
 (3.84)

Таким образом коэффициент В есть обратная восприимчивость. Отметим, величина *a* определяет анизотропию восприимчивости в парамагнитной области, которая не велика, так как В>>*a*. Возможно рассмотрение восприимчивости и в антиферромагнитной области, а также поведения антиферромагнетика в сильных полях (см. §6.1). Термодинамическое рассмотрение антиферромагнетиков особенно интересно при сложных магнитных структурах, где удается, исходя из структуры и симметрии кристалла, предсказать возможные магнитные структуры.

Пример температурной зависимости магнитной восприимчивости, полученной экспериментально, приведен на рис.41. Следует отметить, что столь хорошее согласие с простой теорией наблюдается не столь часто. При сложных магнитных структурах максимума магнитной восприимчивости в точке Нееля может и не наблюдаться. При температуре Нееля, как это и должно быть при фазовом переходе второго рода, имеет место максимум теплоемкости, который особенно хорошо проявляется в тех случаях, когда фазовый переход происходит при низкой температуре и решеточная часть теплоемкости невелика (рис.42).

Рис. 41. Температурная зависимость магнитной восприимчивости монокристалла MnF₂. Кривая с точками по данным [16], сплошная кривая по данным [17].

Рис. 42. Температурная зависимость теплоемкости MnF_2 [18].

ĸ,

§ 3.8. Магнитная симметрия

При изучении кристаллов большое значение имеет учение о симметрии, которое важно не только для описания их структуры, но дает также возможность предсказывать симметрию физических свойств и существование различных эффектов. У кристаллов с магнитным упорядочением помимо атомов, симметрия расположения которых описывается в рамках обычной кристаллографии, в узлах кристаллической решетки, а чаще только в части узлов, находятся магнитные моменты. Отсюда следует, что если включить в рассмотрение эти моменты, то классическое описание симметрии кристалла уже не будет справедливо. Необходимо учесть наличие магнитных моментов, которые являются аксиальными векторами, или псевдовекторами с симметрией ∞/m и их можно представить, как круговые токи (рис.43).

Рис. 43. Вектора - полярный (а) и аксиальный (б).

Все уравнения механики являются инвариантными относительно изменения знака времени, т.е. замены t на -t. Обозначим эту операцию как R. Очевидно, что операция R, действуя на токи, изменяет их направление на обратное и для магнитного момента атома можно написать, что

$$R\overset{\mathcal{H}}{\mu}(\mathbf{r}) = -\overset{\mathcal{H}}{\mu}(\mathbf{r}), \qquad (3.85)$$

т.е. направление магнитного момента изменяется на обратное. Если операция R сама по себе является операцией симметрии кристалла, то это значит, что в кристалле нет магнитного упорядочения. Это очевидно, так как, с одной стороны, раз R операция симметрии, то

$$R\tilde{\mu}(\mathbf{r}) = \tilde{\mu}(\mathbf{r}), \qquad (3.86)$$

с другой стороны, справедливо (3.85). Оба равенства совместимы только при $\mu(\mathbf{r})=0$. На особенность операции инверсии времени по отношению к магнитным свойствам впервые было указано Ландау и Лившицем [19].

Рассмотрим теперь на примере простой объемно центрированной решетки к каким изменениям ее симметрии приведет ферромагнитное упорядочение магнитных моментов в ее узлах. Некоторые элементы симметрии такой ячейки приведены на рис.44а.

Рис. 44. Объемоцентрированная кубическая элементарная ячейка без магнитного упорядочения (а) и с ферромагнитным упорядочением (б).

С появлением магнитного упорядочения (рис.44б) исчезают ось четвертого порядка и одна из зеркальных плоскостей. Вместо них появляются две новые операции симметрии, которые можно представить одну как совокупность оси второго порядка и операции R, т.е. 2R, и вторую как совокупность зеркальной плоскости и операции R, т.е. mR. Итак наличие магнитного упорядочения может приводить к появлению новых элементов симметрии, которые являются комбинацией обычных элементов симметрии с операцией R.

Шубниковым [20] была развита теория так называемой черно-белой симметрии или антисимметрии, которая являлась результатом введения новой операции - операции антисимметрии, преобразующей точку (фигуру) в точку (фигуру)

86

другого цвета. В отличии от операции отождествления 1 (перехода системы саму в себя) операция антиотождествления была обозначена как 1'. Операция 1' может описать изменение любого свойства фигуры на противоположное и, в частности, изменение направление магнитного момента на противоположное. Поэтому операции R и 1' изоморфны. Если обозначить через *g* любую кристаллографическую операцию симметрии, то соответствующая ей антиоперация g' является комбинацией этой операции и операции антиотождествления, т.е. g'=g1'. Очевидно, что в случае магнитной симметрии g'=gR. Далее будем пользоваться только интернациональными обозначениями и под 1' понимать операцию R. Тогда кристаллографическим операциям поворота 1,2,3,4,6 и инверсионным поворотам $\overline{1},\overline{2}(=m),\overline{3},\overline{4},\overline{6}$ соответствуют антиповороты 1',2',4',6'¹⁾ и инверсионные антиповороты $\overline{1'},\overline{2'}(=m'),\overline{3'},\overline{4'},\overline{6'}$. Таким образом операции магнитной симметрии 2R и mR (рис.44б) в интернациональных обозначениях запишутся соответственно как 2' и m'.

Введение операции 1'=R увеличивает число точечных и пространственных групп. Вывод всех точечных групп (классов) магнитной симметрии был сделан Шубниковым в терминах черно-белой симметрии и Тавгером и Зайцевым [21,22] в терминах магнитной симметрии. Всего имеется 122 класса магнитной симметрии. 32 класса не содержат ни 1', ни q'. Это так называемые белые или одноцветные, или полярные классы. Они обозначаются как обычные кристаллографические классы. Еще 32 класса содержат 1' саму по себе. Это серые или бесцветные, или нейтральные классы. К обычным кристаллографическим обозначениям добавляется 1', например 321', m3m'. На то, что точечная группа серая, указывает также наличие в символе знака 3'. Так вместо 321' можно написать 3'2, а вместо m3m1' - m3'm. Далее оставшиеся 58 классов (черно-белые или двухцветные, или смешанной полярности) не содержат 1', но содержат наряду с кристаллографическими операциями также антиоперации q'. Ферромагнетизм допускает 31 класс, из которых 13 белые и 18 черно-белые. Все 122 класса допускают магнитное упорядочение. Что касается пара- и диамагнетиков, то они описываются серыми классами, но, как мы увидим ниже, к серым классам относятся и некоторые антиферромагнетики.

Пространственные группы магнитной симметрии, называемые шубниковскими группами, наряду с преобразованиями обычных пространственных групп - трансляциями, инверсионными и винтовыми поворотами на $\pi/2$ и $\pi/3$ и кратными им, зеркальными и скользящими отражениями и инверсией содержат также преобразования в сочетании с инверсией времени - антитрансляции; обычные, инверсионные и винтовые антиповороты; зеркальные и скользящие антиотражения, а также антиинверсии. Всего насчитывается 1651 шубниковская група [23], которые можно разбить на несколько групп (рис.45)

¹⁾ З' не является элементом симметрии, так как трехкратное повторение З' эквивалентно операции 1'.

Рис.45. Связь между шубниковскими группами и точечными магнитными группами.

Имеется 230 шубниковских групп, которые являются белыми (полярными, одноцветными), т.е. не содержат никаких антиопераций и совпадают с обычными федоровскими группами. Этим шубниковским группам соответствуют белые точечные группы. Далее имеется 230 серых (нейтральных, бесцветных) шубниковских групп, которые наряду с обычными операциями симметрии содержат операцию антиотождествления. Таким шубниковским группам соответствуют серые (бесцветные, нейтральные) точечные группы. Остальные 1191 шубниковские группы черно-белые (двухцветные, смешанной полярности), из них 517 содержат операцию антипереноса. В кристаллах, входящих в эту группу, антиферромагнитная элементарная ячейка не совпадает с химической происходит удвоение по 1, 2 или 3 параметрам и при немагнитных воздействиях макроскопические магнитные свойства не проявляются. Такие шубниковские группы относятся к серым точечным группам. Остальные 674 черно-белые шубниковские группы не содержат антипереносов и операции 1' и относятся к 58 черно-белым точечным группам. Распределение кристаллов по группам магнитной симметрии приведено в табл.3.3.

Таблица 3.3

Распределение кристаллов с различными магнитными свойствами по группам магнитной симметрии

Шубниковские		•			
группы	Точечные группы				
	90 белых и черно-б	белых точечных групп			
	31 ферромагнитная	32 серые точечные			
	группа	антиферромагнитных	группы		
		групп			
	Ферромагнетики (275	Антиферромагнетики	Антиферромагнетики		
1421 белая и черно-	шубниковских групп)	(629 шубниковских	магнитная ячейка		
белая группы		групп)	больше химической		
			(517 шубниковских		
			групп)		
	-	_	Без магнитной		
230 серых групп			структуры (230		
			шубниковских		
			групп)		

Следует отметить, что учение о магнитной симметрии в рамках шубниковских групп не применимо к геликоидальным и зонтичным магнитным структурам в тех случаях, когда такие структуры не обладают трансляционной периодичностью.

§ 3.9. Ферримагнетики

На примере редкоземельных металлов мы видели, что магнитное упорядочение может быть весьма сложным и там это связано с особенностью обменного взаимодействия. Но оказывается могут быть случаи, при которых магнитное упрядочение не сводится к ферро- или антиферромагнетизму. Хотя упрядочение магнитных моментов в такого рода соединениях и обусловлено антиферромагнитным обменным взаимодействием, но они обладают спонтанной намагниченностью и достаточно большой, что делает их больше похожими на ферромагнетики. Такие соединения получили название ферримагнетиков. Классическим примером ферримагнетиков являются ферриты шпинели.

3.9.1. Ферриты шпинели

Ферриты шпинели кристаллизуются в структуре минерала шпинели MgAl₂O₄. Общую формулу ферритов шпинелей можно записать как MO - Fe₂O₃, где M - двухвалентные ионы металлов Ni²⁺, Co²⁺, Mn²⁺, Fe²⁺, Cu²⁺, Mg²⁺, Zn²⁺, Cd²⁺ или комбинация одно- и трехвалентного металлов, например, Li_{0,5}Fe_{2,5}O₄ (Li⁺_{0,5}Fe³⁺_{0,5}O - Fe₂O₃). Эта структура является одной из плотных кубических упаковок шаров, в узлах которых находятся большие по размерам (r = 1,3 Å) ионы кислорода, образующие гранецентрированную решетку. В такой плотной шаровой упаковке имеются междоузлия двух типов : тетраэдрические в центрах тетраэдров, в вершинах которых находятся ионы кислорода, и октаэдрические в центрах октаэдров из ионов кислорода. Число тетраэдрических междоузлий равно удвоенному количеству узлов плотной упаковки (в данном случае кислорода), а число октаэдрических междоузлий в два раза меньше. В междоузлиях обоих видов располагаются ионы металлов, имеющие ионный радиус (0,6 ÷ 0,8) Å, но не все тетраэдрические и октаэдрические междоузлия, которые дальше будем называть

тетраэдрическими и октаэдрическими положениями, заняты ионами металлов, поэтому имеется возможность различных отклонений от идеальной структуры шпинели. На рис.46 представлена элементарная ячейка шпинели. Обозначены не все атомы, но зато выделены соседние октаэдр и тетраэдр что, как будет видно далее, имеет важное значение при рассмотрении обменных взаимодействий.

Почти все ферриты шпинели кубические и относятся к пространственной группе O_h^7 - Fd3m. Элементарная ячейка имеет размеры ~8,5Å. 8 ионов металла занимают позиции 8(*a*) в центре тетраэдров, 16 ионов металла располагаются в позициях 16(*d*) в октаэдрах и 32 иона кислорода находятся в позициях 32(*e*). Совокупность тетраэдрических положений обычно называют подрешеткой A, а октаэдрических подрешеткой B. По распределению ионов металла по тетраэдрическим и октаэдрическим положениям ферриты шпинели можно разделить на три группы :

- 1. Нормальные шпинели все 2-х валентные ионы находятся в тетраэдрических положениях , а все 3-х валентные в октаэдрических . Символически такое распределение можно записать как $(M^{2+})[Fe^{3+}_2]O_4$. К нормальным шпинелям относятся $ZnFe_2O_4$ и CdFe₂O₄.
- 2. Обращенные шпинели все 2-х валентные ионы находятся в октаэдрических положениях, одна половина 3-х валентных ионов находится в октаэдрических положениях, а другая в тетраэдрических. Общую формулу можно записать как (Fe³⁺)[M²⁺Fe³⁺]O₄. Обращенными шпинелями являются MnFe₂O₄, NiFe₂O₄, CoFe₂O₄, a также магнетит Fe₃O₄ (Fe³⁺)[Fe²⁺Fe³⁺]O₄.
- Разупорядоченные шпинели 2-х и 3-х валентные ионы металлов распределены по тетраэдрическим и октаэдрическим положениям произвольно и общую формулу можно записать как (Fe³⁺_{2x}M²⁺_{1-2x})[Fe³⁺_{2-2x}M²⁺_{2x}]O₄. К разупорядоченным шпинелям относится MgFe₂O₄.

В обращенных шпинелях в октаэдрической подрешетке разновалентные ионы обычно распределены статистически, но в некоторых случаях ниже определенной температуры происходит их упорядочение, например, в литиевом феррите $(Fe^{3+})[Li^+_{0,5}Fe^{3+}_{1,5}]O_4$ ниже 1000 К образуется дальний порядок в распределении ионов лития и железа. Предполагается, что в магнетите ниже 115 К происходит упорядочение ионов Fe^{2+} и Fe^{3+} .

Долгое время наблюдавшаяся величина намагниченности магнетита оставалась загадкой. Действительно, если магнитные моменты 2-х и 3-х валентных ионов железа параллельны, то в расчете на формульную единицу, учитывая, что магнитные моменты ионов Fe^{2+} 4 μ_B , а Fe^{3+} 5 μ_B , магнитный момент должен составлять $4\mu_B + (5\cdot 2)\mu_B = 14\mu_B$. Реально же магнитный момент составляет всего 4,1µВ. Объяснение этому было найдено Неелем [24], который предположил, что магнитные моменты ионов, находящихся в октаэдрах и тетраэдрах, направлены антипараллельно, поэтому магнитные моменты ионов Fe³⁺, находящихся в октаэдрах и тетраэдрах, компенсируют друг друга. В итоге намагниченность равна сумме магнитных моментов ионов Fe²⁺ и по величине совпадает с экспериментальным значением. Схематически эта ситуация представлена на рис.47. Общую формулу с учетом магнитного упорядочения можно записать как $(Fe^{3+})[Fe^{2+}Fe^{3+}]O_4$. Таким образом магнитная система состоит из двух коллинеарных, но неэквивалентных магнитных подрешеток - тетраэдрической и октаэдрической - в результате имеется спонтанная намагниченность. Такой случай магнитного упорядочения был назван Неелем ферримагнетизмом. Подобную магнитную структуру имеют и другие ферриты шпинели.

Магнитное упорядочение, предложенное Неелем, находит свое объяснение при рассмотрении косвенных обменных взаимодействий в структуре шпинели. Наиболее сильным взаимодействием является А-О-В.

Рис. 46. Элементарная ячейка феррита со структурой шпинели.

Кислородные тетраэдр и октаэдр имеют общую вершину (см. рис.46) поэтому расстояния между катионами и ионом кислорода невелики, а угол связи ~ 125^0 , т.е. весьма благоприятен для сверхобмена. Соседние кислородные октаэдры имеют общие ребра и угол связи В-О-В ~ 90^0 , что существенно менее благоприятно для обмена. На слабость взаимодействия В-О-В указывает, например, тот факт, что цинковая шпинель ZnFe₂O₄, которая является нормальной и все ионы железа находятся только в октаэдрах, является антиферромагнетиком с очень низкой точкой Нееля ~9 К. И, наконец, взаимодействие А-О-А еще слабее. Угол связи здесь ~ 80^0 . Таким образом по убыванию абсолютной величины обменные интегралы располагаются в ряду J_{AB}, J_{BB}, J_{AA} . Все эти взаимодействия антиферромагнитные, поскольку взаимодействие А-О-В значительно сильнее остальных, то в результате реализуется коллинеарная магнитная структура,

предложенная Неелем. Ферримагнетики по существу являются не полностью скомпенсированными антиферромагнетиками

Рис.47. Направления магнитных моментов атомов железа в элементарной ячейке магнетита.

Правильность магнитной структуры, предложенной Неелем, подтверждается целым рядом экспериментальных результатов, например, изменением величины намагниченности в ряду так называемых смешанных ферритов шпинелей на основе обращенных шпинелей. Замещая часть двухвалентных ионов на ионы Zn²⁺ и учитывая, что ионы цинка предпочитают занимать тетраэдрические положения, получим твердый раствор с общей формулой $(Fe_{1-x}^{3+}Zn_x^{2+})[Fe_{1+x}^{3+}M_{1-x}^{2+}]O_4$, из которой видно, что независимо от вида магнитного иона M^{2+} , по мере увеличения концентрации ионов Zn²⁺ из-за уменьшения магнитного момента тетраэдрической подрешетки суммарный магнитный момент должен увеличиваться и стремиться к $10\mu_B$ в расчете на формульную единицу при x = 1, т.е. к величине магнитного момента двух ионов Fe³⁺ в октаэдрической подрешетке. На рис.48 приведены результаты таких исследований. Видно, что при малых х имеется полное соответствие предсказанию модели. Отклонение с ростом х связано с эффектом так называемого диамагнитного разбавления, т.е. с уменьшением концентрации магнитных ионов. Правильность гипотезы Нееля для магнитной структуры ферритов шпинелей была подтверждена также нейтронографическими исследованиями и исследованиями с помощью эффекта Мессбауэра. В табл.3.4 для некоторых простых ферритов шпинелей приведены распределение катионов по подрешеткам, температуры Кюри и намагниченности насыщения.

Рис. 48. Магнитные моменты насыщения твердых растворов Zn_xM_{1-x}Fe₂O₄ в в магнетонах Бора в расчете на формульную единицу [25].

Таблица 3.4

Распределение катионов, температура Кюри и намагниченности насыщения некоторых простых ферритов шпинелей

Формула	Распределение катионов		μ_A , μ_B	$\mu_{\mathrm{B}},$ μ_{B}	Резуль щ момен	гирую- ий нт, µ _В	T _C , C ⁰	4π] Ι	M _s , ⁻ c
	(A)	[B]			теор.	эксп.		0К	300К
Lli _{0,5} Fe _{2,5} O ₄	Fe ³⁺	$Li_{0,5}^{+}+Fe_{1,5}^{3+}$	5	0+2,5	2,5	2,6	575	4200	3900
MgFe ₂ O ₄	Fe ³⁺	$Mg^{2+}+Fe^{3+}$	5	0+5	0	1,1	440	1800	1500
CuFe ₂ O ₄	Fe ³⁺	$Cu^{2+}+Fe^{3+}$	5	1+5	1	1,3		2000	1700
NiFe ₂ O ₄	Fe ³⁺	Ni ²⁺ +Fe ³⁺	5	2+5	2	2,3	585	3800	3400
MnFe ₂ O ₄	$Mn^{2+}_{0,8}+Fe^{3+}_{0,2}$	$Mn^{2+}_{0,2}+Fe^{3+}_{1,8}$	5	5+5	5	4,6	300	7000	5000
FeFe ₂ O ₄	Fe ³⁺	$Fe^{2+}+Fe^{3+}$	5	4+5	4	4,1	585	6400	6000
CoFe ₂ O ₄	Fe ³⁺	$Co^{2+}+Fe^{3+}$	5	3+5	3	3,7	520	6000	5300

3.9.2. Теория Нееля

Неелем [24] была развита теория коллинеарных ферримагнетиков, основанная на представлении о молекулярном поле. Ниже рассмотрим основные результаты этой теории. Для простоты будем считать, что в соединении имеются магнитные атомы только одного вида с магнитным моментом μ_0 и концентрацией N. Магнитные атомы занимают два неэквивалентных положения A и B. Пусть λ и μ - доли магнитных ионов соответственно в подрешетках A и B. Таким образом λ + μ = 1. Обозначим через M_A намагниченность при температуре T в том случае если бы все магнитные атомы находились в подрешетке A, а через M_B в случае если бы все магнитные атомы находились в подрешетке B. Тогда действительные намагниченности подрешеток A и B равны соответственно λM_A и μM_B и для суммарной намагниченности M_S имеем

$$\mathbf{M} = \lambda \mathbf{M}_{\mathrm{A}} + \mu \mathbf{M}_{\mathrm{B}} \,. \tag{3.87}$$

Эффективные поля, действующие на ионы в A и B подрешетках, обозначим соответственно как H_A и H_B и будем считать, что каждое из них состоит из двух слагаемых - одно пропорциональное намагниченности своей подрешетки и второе пропорциональное намагниченности чужой подрешетки. Для H_A и H_B тогда имеем

$$\mathbf{H}_{\mathrm{A}} = \mathbf{n}(\alpha \lambda \mathbf{M}_{\mathrm{A}} - \mu \mathbf{M}_{\mathrm{B}}), \qquad (3.88)$$

$$\mathbf{H}_{\mathrm{B}} = \mathbf{n}(\beta \mu \mathbf{M}_{\mathrm{B}} - \lambda \mathbf{M}_{\mathrm{A}}) . \tag{3.89}$$

Здесь n, na и n\beta коэффициенты молекулярного поля, при этом n > 0. Взаимодействие между подрешетками считается отрицательным, т.е. намагниченности подрешеток антипараллельны. a и β - безразмерные параметры, знак и величина которых характеризуют внутриподрешеточные взаимодействия в относительных единицах при этом за единицу измерения принят коэффициент молекулярного поля для межподрешеточного взаимодействия т.е. n. В парамагнитной области считается, что выполняется закон Кюри, тогда для намагниченностей подрешеток имеем

$$\mathbf{M}_{A} = \frac{C}{T} (\mathbf{H} + \mathbf{H}_{A}),$$

$$\mathbf{M}_{B} = \frac{C}{T} (\mathbf{H} + \mathbf{H}_{B}).$$
(3.90)

Здесь $C = N\mu_0^2/3k$. Исключая из (3.87 - 90) M_A , M_B , H_A и H_B , получим

$$H = \frac{T^2 - nC(\lambda\alpha + \mu\beta)T + n^2C^2\lambda\mu(\alpha\beta - 1)}{C[T - nC\lambda\mu(2 + \alpha + \beta)]}M,$$
(3.91)

откуда

$$\frac{1}{\chi} = \frac{T}{C} + \frac{1}{\chi_0} - \frac{\sigma}{T - \theta},$$
(3.92)

93

где

$$\frac{1}{\chi_0} = n(2\lambda\mu - \lambda^2\alpha - \mu^2\beta),$$

$$\sigma = n^2 C\lambda\mu [\lambda(1+\alpha) - \mu(1+\beta)]^2,$$

$$\theta = nC\lambda\mu (2+\alpha+\beta).$$
(3.93)

Выражение для обратной восприимчивости (3.92) представляет собой гиперболу с асимптотой

$$\frac{1}{\chi} = \frac{T}{C} + \frac{1}{\chi_0},\tag{3.94}$$

пересекающую ось температур (рис.49) в точке

$$\theta_a = -\frac{C}{\chi_0}.$$
(3.95)

Рис. 49. Температурные зависимости $1/\chi$ ферримагнетика .

Эта температура называется асимптотической точкой Кюри. Восприимчивость обращается в бесконечность при температуре

$$\theta_{p} = \frac{nC}{2} \left[\lambda \alpha + \mu \beta - \sqrt{\left(\lambda \alpha - \mu \beta \right)^{2} + 4\lambda \mu} \right].$$
(3.96)

Ниже этой температуры возникает магнитное упорядочение. Для реализации такого состояния необходимо, чтобы $\theta_p > 0$. Из (3.91) и (3.96) следует, что $\theta_p = 0$ при

$$\alpha\beta = 1. \tag{3.97}$$

Если рассматривать α и β как прямоугольные координаты, то отрицательная ветвь гиперболы (3.97) разделяет плоскость $\alpha\beta$ на две части (рис.50а). Та часть, в которой находится начало координат, соответствует таким α и β , при которых $\theta_p > 0$. Это область ферримагнетизма. В другой части этой плоскости $\theta_p < 0$, что соответствует парамагнетизму.

- Рис. 50. а) Диаграмма различных магнитных состояний двухподрешеточного ферримагнетика в функции α и β при отрицательном взаимодействии между подрешетками (λ/μ = 2/3) [24].
 - б) Возможные температурные зависимости спонтанной намагниченности двухподрешеточного ферримагнетика [24].

Ниже температуры θ_p появляются спонтанные намагниченности подрешеток λM_{As} и μM_{Bs} , которые определяются из следующих уравнений :

$$M_{As} = NgS\mu_{B}B_{s}\left[\frac{gS\mu_{B}n(\alpha\lambda M_{As} - \mu M_{Bs})}{kT}\right],$$

$$M_{Bs} = NgS\mu_{B}B_{s}\left[\frac{gS\mu_{B}n(\beta\mu M_{Bs} - \lambda M_{As})}{kT}\right].$$
(3.98)

Результирующая спонтанная намагниченность $M_s = |\lambda M_{As} - \mu M_{Bs}|$ и может быть вычислена из уравнений (3.98). Анализ температурной зависимости M_s для различных величин параметров α , β , λ и μ привел к результатам, которые можно продемонстрировать на рис.(50a) для $\lambda/\mu = 2/3$. Около T = 0 в различных областях плоскости $\alpha\beta$ имеем

FCE -
$$M_{As} = M_{Bs} = M$$
, намагниченности максимальны,

ECB - $M_{As} = M$, M_{Bs} не насыщена, ACF - $M_{Bs} = M$, M_{As} не насыщена. ACD - $M_s \parallel M_{Bs}$ везде, HSB - $M_s \parallel M_{As}$ везде, $M_s \parallel M_{Bs}$ при T = 0, DSH $M_s \parallel M_{As}$ при T вблизи θ_p .

Таким образом в области DSH при T = 0 спонтанная намагниченность параллельна намагниченности подрешетки B, а около точки Кюри намагниченности подрешетки A. Отсюда следует, что при некоторой температуре, которая называется точкой компенсации T_{κ} , спонтанная намагниченность меняет свою ориентацию, проходя через ноль. Схематически этот случай температурных зависимостей спонтанных намагниченностей представлен на рис.51.

Рис. 51. Температурная зависимость намагниченностей подрешеток A и B, а также результирующей спонтанной намагниченности в том случае, когда существует точка компенсации T_к.

Вообще для двухподрешеточного неелевского ферримагнетика теория молекулярного поля дает несколько возможных типов температурной зависимости спонтанной намагниченности, которые схематически приведены на рис.50б. Можно отметить еще одну особенность температурного хода намагниченности, которую дает теория молекулярного поля. В некоторых случаях, как видно из рис.50б, при повышении температуры от T = 0 спонтанная намагниченность увеличивается, Это противоречит результату квантовомеханического рассмотрения, предсказывающего и в случае ферримагнетизма выполнение закона Блоха.

Теория Нееля предполагает, что межподрешеточное взаимодействие А - В много сильнее, чем внутриподрешеточное А - А или В - В, следствием чего и является коллинеарная ориентация магнитных подрешеток. В случае сильного внутриподрешеточного взаимодействия возможно образование неколлинеарных магнитных структур, например, если внутриподрешеточное взаимодействие для одной из подрешеток

антиферромагнитное и сравнимо с межподрешеточным взаимодействием, то возможно образование треугольной магнитной структуры.

3.9.3. Ферриты гранаты

Ферриты - гранаты имеют общую формулу $M_3Fe_5O_{12}$, где M трехвалентный ион Y^{3+} , Gd^{3+} , Dy^{3+} , Ho^{3+} , Er^{3+} , Tm^{3+} , Lu^{3+} , Yb^{3+} , Sm^{3+} , Eu^{3+} , Tb^{3+} , и кристаллизуются в структуре изоморфной структуре минерала граната $Ca_3Al_2(SiO_4)_3$. Пространственная группа ферритов-гранатов O_h^{10} - *Ia3d*. Элементарная ячейка имеет размеры ~ 12Å и содержит 8 формульных единиц (160 атомов) : 96 - O^{2-} , 40 - Fe³⁺ и 24 - M³⁺. Катионы расположены в трех положениях - в тетраэдрах (24d), октаэдрах (16*a*) и додекаэдрах (24c), образованных ионами кислорода. Фрагмент структуры граната показан на рис.52.

Рис.52. Фрагмент кристаллической структуры феррита - граната иттрия . ● - ионы Fe³⁺ в тетраэдрах , ⊙ - ионы Fe³⁺ в октаэдрах , О - ионы Y³⁺ в додекаэдрах . Ионы кислорода находятся в вершинах тетраэдров , октаэдров и додекаэдров .

Тетраэдрические и октаэдрические положения заняты ионами Fe^{3+} , а додекаэдрические M^{3+} . Таким образом распределение катионов можно записать следующим образом :

$$\{M^{3+}_{3}\}$$
 (Fe³⁺₃) [Fe³⁺₂] O₁₂.
додекаэдры тетраэдры октаэдры

Обменное взаимодействие наиболее сильное между тетраэдрическими и октаэдрическими ионами железа, т.е. в цепочке (Fe) - О - [Fe], где угол связи ~127⁰. Это взаимодействие отрицательное и намного сильнее, чем внутри тетраэдрической и октаэдрической подрешеток, поэтому намагниченности этих подрешеток антипараллельны. Из трех обменных связей через ионы кислорода у катионов, находящихся в додекаэдрах $\{M\}$ - O - (Fe), $\{M\}$ - O - [Fe] и $\{M\}$ - O - $\{M\}$ наиболее сильным является первое, т.е. с тетраэдрическими ионами железа, при этом это взаимодействие отрицательное и значительно слабее чем между железными подрешетками. Таким образом магнитную структуру феррита-граната можно записать в $\{\breve{M}_3\}(\breve{Fe}_3)[\breve{Fe}]O_{12}$. То, что додекаэдрическая подрешетка обменно слабо связана, виде подтверждается тем, что температуры Кюри всех ферритов-гранатов очень близки (563 ± 15)К. Такая магнитная структура хорошо подтверждается экспериментом. Действительно, в расчете на формульную единицу магнитный момент Y₃Fe₅O₁₂ по расчету составляет 5µ_B (магнитный момент одного иона Fe₃₊), а экспериментальное значение 4,96µ_B. Для Gd₃Fe₅O₁₂ расчет дает 16µ_B, а экспериментальное значение 15,2µВ. В отличии от гадолиниевого феррита-граната у ферритов с другими редкими землями согласие не столь хорошее, так как такие катионы находятся не в S состоянии и их орбитальный момент оказывается частично замороженным. Для некоторых ферритов-гранатов температурная зависимость спонтанной намагниченности приведена на рис.53

Рис. 53. Зависимость от температуры спонтанной намагниченности некоторых ферритов - гранатов [26].

Видно, что у многих гранатов имеется точка компенсации. Это объясняется тем, что при низких температурах из-за большого магнитного момента редкоземельного иона сумма намагниченностей додекаэдрической и октаэдрической подрешеток больше чем намагниченность тетраэдрической подрешетки. С повышением температуры намагниченность додекаэдрической подрешетки быстро падает, при некоторой температуре суммарная намагниченность проходит через ноль и далее уже превалирует намагниченность тетраэдрической подрешетки.

Между простыми ферритами-гранатами возможно образование взаимных твердых растворов. Кроме того возможно также образование замещенных ферритов-гранатов с заменой ионов Fe^{3+} на Al^{3+} , Ga^{3+} или Si^{4+} , Ge^{4+} , V^{5+} с одновременным введением в додекаэдрическую подрешетку Ca^{2+} для сохранения стехиометрии. В додекаэдрическую подрешетку возможно также введение значительного количества ионов Bi^{3+} .

Ферриты-гранаты обладают целым рядом физических свойств, которые делают их незаменимыми для многих физических исследований и технических применений. Это большое электрическое сопротивление до ~ 10¹² Ом · см, очень малая ширина линии ферромагнитного резонанса и малые потери в диапазоне СВЧ, оптическая прозрачность в тонких слоях. Для физических исследований и практического применения очень важно то, что магнитные свойства ферритов-гранатов можно менять в широких пределах изменением химического состава и условиями синтеза.

3.9.4. Гексагональные ферриты

Большую группу ферримагнетиков представляют гексаферриты - ферриты с гексагональной кристаллической структурой. Такие соединения образуются в системе окислов $M^{IO} - M^{IIO} - Fe_2O_3$. Здесь M^{I} обозначает двухвалентный ион с большим ионным радиусом Ba^{2+} , Pb^{2+} , Sr^{2+} , Ca^{2+} , а M^{II} соответствует двухвалентным ионам переходных элементов группы железа Mg^{2+} , Mn^{2+} , Fe^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} с небольшими ионными радиусами (см. табл. 3.5).

Ион	Радиус, Å	Ион	Радиус, Å
O ²⁻	1,34	Mg^{2+}	0,74
Ca ²⁺	1.06	Mn ²⁺	0,91
Sr^{2+}	1,27	Fe ²⁺	0,80
Ba^{2+}	1,43	Co ²⁺	0,78
Pb^{2+}	1,32	Ni ²⁺	0,74
		Zn^{2+}	0,83
		Cu ²⁺	0,80

Ионные радиусы некоторых двухвалентных ионов

Таблица 3.5

Кристаллическая структура гексаферритов состоит из чередующихся слоев с плотной кубической и гексагональной упаковками ионов кислорода. Слои располагаются перпендикулярно гексагональной оси. Наиболее простыми гексаферритами являются магнитоплюмбит $PbFe_{12}O_{19}$ (аналог минерала магнитоплюмбита с примерной формулой $PbFe_{7,5}Mn_{3,5}Al_{0,5}Ti_{0,5}O_{19}$) и ферроксдюр $BaFe_{12}O_{19}$, в которых отсутствует компонента $M^{II}O$. Оба эти соединения имеют близкую кристаллическую структуру, которую можно представить как чередующиеся вдоль гексагональной оси *с* блоков S, S^{*}, R и

 R^* типов. Блоки S и S^{*} типа имеют структуру шпинели с осью [111] вдоль оси *с*. Каждый из них содержит 2 слоя кислорода и состоит из 8 ионов кислорода и 6 ионов железа. Блоки R и R^{*} типа гексагональные, состоят из трех слоев кислорода и содержат 11 ионов кислорода, 6 ионов железа и в случае ферроксдюра один ион бария, замещающий один из ионов кислорода (рис.54).

Рис. 54. Расположение атомов в слоях R и T типов.

Блоки S^* и R^* отличаются соответственно от блоков S и R только тем, что они повернуты относительно них на 180° вокруг оси *с*. Слой, содержащий ион бария, вместе с прилежащими к нему слоями из ионов кислорода образуют гексагональную упаковку. В элементарной ячейке, содержащей две формульные единицы, блоки чередуются в последовательности RSR^*S^* (рис.55). Структура такого типа называется структурой типа M. Ионы Fe³⁺ в ней занимают положения трех типов - октаэдрические , тетраэдрические и гексаэдрические. Последние имеют пятикратное кислородное окружение, образующее бипризму из двух тетраэдров, имеющих общую грань. Что касается магнитной структуры, то в шпинельных блоках магнитные моменты ионов железа, занимающих октаэдрические положения, антипараллельны магнитным моментам ионов железа в тетраэдрах. Таким образом шпинельный блок имеет магнитный момент $(4 - 2) \times 5\mu_B = 10\mu_B$. В гексагональном блоке магнитный момент иона железа в гексаэдрическом положении параллелен магнитным моментам ионов в трех октаэдрах и антипараллелен магнитным моментам остальных двух ионов в октаэдрах, т.е. гексагональный блок имеет магнитный момент $(1 + 3 - 2) \times 5\mu_{\rm B} = 10\mu_{\rm B}$. Таким образом суммарный магнитный момент равен 20µ_в, что хорошо согласуется с экспериментальным значением.

В гексаферритах более сложного состава присутствует еще один гексагональный блок Т, который состоит из четырех слоев кислорода, а ионы бария замещают некоторые ионы кислорода в двух соседних слоях (рис. 54). Ряд соединений с различными комбинациями структурных блоков и их символические обозначения приведены в табл. 3.6, а в табл. 3.7 приведены некоторые магнитные характеристики представителей гексаферритов с различной структурой. Возможен синтез большого числа гексаферритов с различными комбинациями блоков и длина элементарной ячейки может достигать нескольких сотен ангстрем. Большинство гексаферритов оси,

Рис. 55. Расположение атомов соединениях М типа.

но

гексаферриты группы Y имеют плоскость легкого намагничивания и называются феррокспланами. Гексаферриты Co₂Y и Co₂Z при температурах ниже 215 K обладают конусом легких направлений. Не простая кристаллическая структура, разное кислородное окружение магнитных ионов все это создает сложную картину обменных взаимодействий и это может привести даже к образованию геликоидальной магнитной структуры как в случае (Ba_{0,1}Sr_{0,9})Zn₂Fe₁₂O₂₂.

Таблица 3.6

Химический состан	Символ	Вид и чередование	Число слоев в	Длина ячейки
		блоков	гексагональной	вдоль
			ячейке	гексагональной оси
BaFe ₁₂ O ₁₉	М	RSR*S*	10	23,2
BaM ^{II} ₂ Fe ₁₆ O ₂₇	W	RSSR*S*S*	14	32,8
$Ba_2M^{II}_2Fe_{12}O_{22}$	Y	$(RTS)_3$	3×6	43,5
$Ba_3M^{II}_{2}Fe_{24}O_{41}$	Ζ	RSTSR*S*T*S*	22	52,3

Данные о структуре некоторых гексаферритов

Таблица 3.7 Магнитные свойства некоторых гексаферритов

Химический состав	Обозначение	Намагниченность насыщения		Точка Кюри, Т _С , ⁰ С
		Гс·см ³ ·г ⁻¹ , 0 К	4πМ , Гс	
			комнатная т-ра	
$BaFe_{12}O_{19}$ (BaO·6Fe ₂ O ₃)	BaM	10	4780	450
$PbFe_{12}O_{19}$ (PbO·6Fe ₂ O ₃)	PbM	80	4020	452
$BaMn_2Fe_{16}O_{27}$ (BaO·2MnO·8Fe ₂ O ₃)	Mn_2W	97	3900	415
$BaFe_2Fe_{16}O_{27}$ (BaO·2FeO·8Fe ₂ O ₃)	Fe ₂ W	98	5220	455
$Ba_2Mn_2Fe_{12}O_{22}$ (2BaO·2MnO·6Fe ₂ O ₃)	Mn_2Y	42	2100	290
$Ba_2Co_2Fe_{12}O_{22}$ (2BaO·2CoO·6Fe ₂ O ₃)	Co_2W	39	2300	340
$Ba_3Co_2Fe_{24}O_{41}$ (3BaO·2CoO·12Fe ₂ O ₃)	Co_2Z	69	3350	410

Благодаря разнообразным анизотропным свойствам, высоким точкам Кюри и большой намагниченности гексаферриты находят широкое применение в технике. У одноосных гексаферитов коэрцитивная сила может достигать нескольких десятков кЭ и такие составы широко применяются для изготовления постоянных магнитов. Узкие линии ферромагнитного резонанса всего в несколько эрстед и большие константы анизотропии позволяют применять гексаферриты в различных устройствах СВЧ - диапазона. Феррокспланы являются уникальными магнитными материалами, обладающими значительной магнитной проницаемостью вплоть до частот в несколько сотен мгц, что позволяет использовать их в СВЧ - устройствах.

§ 3.10. Перовскиты манганиты

Своеобразным классом магнетиков являются манганиты со структурой перовскита с ионами марганца в 3-х и 4-х валентном состоянии. Это твердые растворы, общую формулу которых можно записать как La_{1-x} $M^{2+}_{x}Mn^{2+}_{1-x}Mn^{4+}_{x}O_{3}$. Здесь М-двухвалентные ионы Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺. Вместо лантана может быть Pr³⁺ или Nd³⁺. Возможны и комбинации 3-х валентных ионов. В ряду таких твердых растворов в некотором интервале значений *x* примерно от *x* = 0,2 до *x* = 0,6 наблюдаются ферромагнитные свойства со спонтанной намагниченностью, соответствующей спиновым магнитным моментам 3-х и 4-х валентных ионов марганца. Ферромагнитные составы, как правило, имеют почти кубическую элементарную

ячейку лишь с небольшими ромбоэдрическими или моноклинными искажениями. Зависимость намагниченности насыщения от состава для твердых растворов La₁₋ _xCa_x MnO₃ приведена на рис.56.

Рис. 56. Зависимость намагниченности насыщения от состава твердых растворов (LaCa)MnO₃ [27]. Прямая линия вычисленная зависимость с учетом только

спиновых магнитных моментов.

Крайние соединения LaMnO₃ и CaMnO₃ антиферромагнетики. Небольшая спонтанная намагниченность у LaMnO₃ связана со слабым ферромагнетизмом (подробно о слабом ферромагнетизме см. §4.3). Ферромагнетизм можно получить и путем создания нестехиометрических составов, так ферромагнетиком является LaMnO_{3,11}.

Особенностью манганитов перовскитов является также очень сильная зависимость электрических свойств от соотношения концентраций 3-х и 4-х валентных ионов марганца. Температурные зависимости удельных сопротивлений различных составов твердых растворов $Ln_{1-x}Sr_xMnO_3$ приведены на рис.57, а на рис.58 представлена магнитная фазовая диаграмма. Видно, что с ростом *x* происходит переход электропроводности, характерной для диэлектрика, к металлической, при этом примерно на 200^0 повышается температура магнитного упорядочения.

Электрические свойства ферромагнитных составов очень чувствительны к магнитному полю и обладают гигантским магнитосопротивлением. На рис.59 представлены температурные зависимости удельного сопротивления одного из составов в различных магнитных полях, а также относительное

магнитосопротивление $\delta_0 = \frac{\rho(H) - \rho(0)}{\rho(0)}$ при поле в 15 Тл. Наибольшая величина

Рис. 57. Температурная зависимость удельного сопротивления образцов твердых растворов La_{1-x}Sr_xMnO₃ [28]. Стрелками показаны температуры магнитного упорядочения.

Рис.58. Фазовая диаграмма твердых растворов La_{1-x}Sr_eMnO₃ [28]. ПД - парамагнитный диэлектрик, ПМ - парамагнитный металл, СФМ - слабый ферромагнетик, ФД - ферромагнитный диэлектрик, ФМ - ферромагнитный металл

Рис.59. Температурная зависимость удельного сопротивления образца La _{0,85}Sr _{0,15} MnO ₃ в различных магнитных полях. Светлые кружки δ₀ в поле 15 T. [28].

магнитосопротивления $\rho_H = \frac{\rho(H) - \rho(0)}{\rho(H)}$ получена на пленках твердых растворов

(La,Ca)MnO₃ при 125 К $\delta_{\rm H}$ = -8,3 \cdot 10⁵ % и при 57 К -10⁸ % [29].

Первые попытки объяснения столь необычных магнитных и электрических свойств основывались на наблюдавшемся сочетании ферромагнитного упорядочения с высокой электропроводностью, что и послужило причиной привлечения теории так называемого двойного обмена Зинера [30-32]. Предполагается, что "лишний" электрон на Mn³⁺ по сравнению с Mn⁴⁺ может переходить с иона Mn³⁺ на ион Mn⁴⁺ и обратно, т.е. непрерывно происходит чередование кофигураций Mn³⁺ - O²⁻ - Mn⁴⁺ = Mn⁴⁺ -O²⁻ - Mn³⁺. При этом переход электрона происходит не непосредственно с одного иона марганца на другой, а через промежуточный ион кислорода. Считается, что мигрирующий электрон поляризован сильным внутриобменным взаимодействием и, согласно правилу Хунда, его спин параллелен спину ионного остова. Так как переход электрона происходит без изменения направления спина, то энергия системы понижается, если спины ионов марганца параллельны. Предполагалось, что у составов с намагниченностью, меньшей ферромагнитной, магнитная структура неколлинеарная.

Выдвигалось и альтернативное объяснение ферромагнетизма, основанное на том, что косвенное обменное взаимодействие между ионами Mn³⁺ и Mn⁴⁺ по правилу Гуденафа- Канамори-Андерсона преимущественно ферромагнитное. В тех случаях, когда намагниченность меньше ферромагнитной также предполагалась неколлинерная магнитная структура. Однако в дальнейшем стали склоняться к тому, что манганиты с Mn³⁺ и Mn⁴⁺ неоднородны и Mn⁴⁺ преимущественно концентрируется около 2-х - валентных катионов. Такая неоднородность по составу приводит к неоднородности по магнитному упорядочению. Предполагается, что имеются ферромагнитные и антиферромагнитные области. Отношение объемов, занимаемых этими областями, зависит от состава и поэтому нет необходимости предполагать наличие неколлинеарных магнитных структур. Основанием для вывода о магнитной неоднородности служат главным образом результаты нейтронографических исследований [33], которые показывают сосуществование ферромагнитного и антиферромагнитного упорядочений. Окончательного объяснения магнитных свойств смешанных манганитов пока нет.

§ 3.11. Магнитные полупроводники

Монохалькогениды европия

Двухвалентный европий образует с халькогенами O, S, Se и Te простые соединения - монохалькогениды типа EuX с простой кубической структурой типа NaCl (пространственная группа Fm3m - O⁵_h). Эти соединения относятся к полупроводникам с широкой запрещенной зоной и широкой зоной проводимости. Стехиометрический EuO при комнатной температуре имеет сопротивление 10⁸-10¹⁰ Ом · см, но при легировании 3-х валентными ионами редких земель или при наличии вакансий по кислороду электропроводность может увеличиться на 11 - 12 порядков.

Наиболее интересны магнитные свойства монохалькогенидов европия. Оказалось, что EuO, EuS - ферромагнетики, EuSe - метамагнетик (о метамагнетизме см. §6.1), и EuTe - антиферромагнетик. Некоторые характеристики этих соединений приведены в табл.3.8.

Таблица 3.8

Монохалькохалькогенид	<i>a</i> , Å	Магнитная структура	Т _С или Т _N , К	$4\pi M_s$,
		Ф-ферромагнетик		1 c
		АФ-антитиферромагнетик		
EuO	5,144	Φ	69,4	24300
EuS	5,965	Φ	16,5	15400
EuSe	6,195	Φ - ΑΦ	3,8 - 4,6	13800
EuTe	6,598	AΦ	9,6	-
			,	

Параметры элементарной ячейки и магнитные характеристики монохалькогенидов европия

Температуры магнитного упорядочения невысокие, но, например, для EuO температура Кюри может быть повышена до 130 К при частичной (до 5 - 8%) заменой европия на самарий. В твердых растворах Eu_{1-x}Sm_x самарий двухвалентный, хотя сам моноокисла не образует. Двухвалентный ион европия находится в ${}^8S_{7/2}$ состоянии и не обладает орбитальным моментом. 4f - электроны у Eu²⁺

экранированы, да и радиус их мал, поэтому ферромагнитное упорядочение в EuO и EuS реализуется благодаря тому, что имеется незаполненная 5d - оболочка.

Ферромагнитные халькогенидные шпинели

Существует целый ряд халькогенидных шпинелей хрома с общей формулой MCr_2X_4 , где M = Cd, Hg, Zn, Cu, a X = S или Se. Все эти соединения кристаллизуются в структуре нормальной шпинели (пространсвенная группа - Fd3m- O_h^7). Таким образом ионы Cr^{3+} занимают только октаэдрические положения. В табл. 3.9 приведены некоторые данные об этих соединениях. Большинство из них

Таблица 3.9 Некоторые данные о халькогенидных шпинелях хрома

Шпинель	<i>a</i> ,Å	Магнитная структура	Т _С или
MCr ₂ X ₄	,		Τ _N , К
CdCr ₂ S ₄	10,244	Φ	84,5
$CdCr_2Se_4$	10,755	Φ	130
$HgCr_2S_4$	10,237	Φ - ΑΦ	60 - 36
HgCr ₂ Se ₄	10,753	Φ	106 - 120
ZnCr ₂ S ₄	9,986	AΦ	18
ZnCr ₂ Se ₄	10,443	АΦ	20
$CuCr_2S_4$	9,821	Φ	390 - 420
$CuCr_2Se_4$	10,334	Φ	430 - 460

являются ферромагнетиками с намагниченностью насыщения при 4,2 К $4\pi M_S = 4500 \ {\ Fc}$, что соответствует 2,7 - 2,8 μ_B на один ион ${\rm Cr}^{3^+}$ при теоретической величине $3\mu_B$. Соединения с цинком - антиферромагнетики со спиральной (ZnCr₂S₄) или геликоидальной (ZnCr₂Se₄) магнитными структурами. Шпинели HgCr₂S₄ свойствинен метамагнетизм - при T< 25 K в слабом поле антиферромагнетик в сильном ферромагнетик. При температурах выше 25 К типичный ферромагнетик. Заметим, что CuCr₂S₄ и CuCr₂Se₄, обладающие наиболее высокими температурами Кюри, имеют металлическую проводимость.

У непроводящих халькогенидных шпинелей ферромагнитное упорядочение обусловлено 90⁰ - ым обменным взаимодействием между ионами Cr^{3^+} , находящимися в октаэдрах. По правилу Гуденафа-Канамори-Андерсона такое взаимодействие t_{2g} - электронов ионов хрома через π -связи ионов халькогена является ферромагнитным. В случае металлической проводимости или лигированных кристаллов , обладающих металлической проводимостью , имеет место как 90⁰-ое косвенное обменное взаимодействие , так и обменное взаимодействие через электроны проводимости .

§ 3.12. Аморфные магнетики и спиновые стекла

Наряду с кристаллами с магнитным упорядочением, которые обладают дальним порядком как в расположении атомов, так и в ориентации атомных магнитных моментов, в настоящее время получены материалы, ориентация магнитных моментов атомов в которых ниже определенной температуры фиксированы в

пространстве, но дальний магнитный порядок отсутствует. Причиной этого является или аморфное состояние вещества, или отсутствие в кристалле дальнего порядка в положении магнитных атомов двух или более видов в сочетании с некоторыми особенностями обменных взаимодействий между ними.

Аморфные магнетики

Возможность существования аморфных и жидких ферромагнетиков впервые была показана теоретически А.И.Губановым [34]. В дальнейшем открылась перспектива практического применения аморфных магнетиков, что стимулировало развитие технологии таких материалов и их изучение. Для аморфного вещества характерно отсутствие дальнего порядка в расположении атомов, макроскопическая однородность и наличие ближнего порядка, т.е. порядка на нескольких атомных расстояниях. По своей атомной структуре аморфные вещества аналогичны жидкостям, но аморфное состояние неравновесное и может существовать в некотором интервале температур определенное время - время стабильности и аморфные вещества кристаллизуются при повышении температуры выше температуры кристаллизации. Атомную структуру аморфного магнетика можно представить как случайную плотную упаковку жестких сфер. Упаковка случайная, так как корреляция между сферами на расстоянии более пяти их диаметров мала, но плотная, так как промежутки между сферами (пустоты) меньше размеров сфер. Пустоты, которые составляют примерно 20 % от общего числа сфер, могут быть заняты атомами меньшего размера, это так называемые аморфизаторы, или стеклообразующие элементы (B, P, C, Si, Ge и др.), присутствие которых существенно повышает температуру кристаллизации.

Существует несколько методов получения аморфных магнетиков, но все они имеют одну общую черту - аморфное состояние получается при температурах ниже температуры кристаллизации. Наиболее распространенным методом является быстрое охлаждение (закалка) расплава. Обычно в этом случае струя расплава льется на охлаждаемый и быстро вращающийся диск или в зазор между двумя охлаждаемыми и быстро вращающимися в разные стороны валками. Скорость охлаждения должна быть настолько велика, чтобы не мог начаться процесс кристаллизации. Обычно это скорость порядка $10^5 - 10^6$ Км·с⁻¹. Выгоднее, чтобы температура плавления была как можно ниже и этому способствуют добавки стеклообразующих элементов. С такими добавками получают аморфные сплавы 3d-металлов в виде лент шириной в несколько сантиметров и толщиной около 0,05 мм, остающиеся стабильными до температур в несколько сотен градусов Цельсия.

Неупорядоченность атомной структуры приводит к значительным флутуациям обменных взаимодействий и одноионной анизотропии. При положительном обменном взаимодействии, превышающем одноионную анизотропию, устанавливается ферромагнитное состояние. Если положительное обменное взаимодействие такого же порядка как и одноионная анизотропия, то устанавливается состояние неупорядоченного ферромагнетизма, т.е. макроскопическая намагниченность имеется, но существует некий разброс по направлениям атомных магнитных моментов. Что касается самих атомных моментов, то они меньше чем в кристаллических сплавах на 0,3 – 0,5 µ_B, что является следствием влияния стеклообразующих добавок. При одном и том же химическом составе магнитные свойства магнетика, находящегося в кристаллическом и аморфном состояниях, могут существенно различаться.
Например, если кристаллические FeF_2 , $FeCl_2$, $Bi_2Fe_4O_9$ - антиферромагнетики, то в аморфном состоянии ферромагнитные и у $Bi_2Fe_4O_9$ температура Кюри в два раза выше температуры Нееля. Магнитные характеристики некоторых аморфных сплавов приведены в табл.3.10.

Таблица 3.10

Намагниченность насыщения (4 π M), температура Кюри (T_C), коэрцитивная сила (H_c) и удельное сопротивление (ρ) некоторых аморфных сплавов при 300 К

Состав	4πМ, кГс	T _C , ^o C	Н _с , Э	р·10 ⁶ , Ом·см
$Fe_3Co_{72}P_{16}B_6Al_3$	6,3	260	0,015	-
$Fe_{80}B_{20}$	16,0	374	0,075	140
$Fe_{80}P_{16}C_{3}B_{1}$	14,9	292	0,05	150
$Fe_{40}Ni_{40}P_{14}B_6$	8,2	247	0,019	180

Разработанные аморфные сплавы отличаются высокой магнитной проницаемостью , малыми магнитными и акустическим потерями и очень высокой коррозионной стойкостью .

Аморфные пленки чистых 3d-металлов были получены путем термического напыления в вакууме на подложку, охлаждаемую жидкими азотом, водородом или гелием. Как правило, такие пленки имели температуру кристаллизации ниже комнатной. Достаточно термически стабильными (температура кристаллизации несколько сотен градусов Цельсия) оказываются пленки сплавов 3d-металлов с редкими землями. Такие пленки получают как термическим, так и катодным (ионно-плазменным) напылением на охлаждаемую водой подложку при высокой скорости осаждения.

Магнитная структура таких пленок определяется ферромагнитным взаимодействием между атомами 3d-металлов, которое наиболее сильное, и антиферромагнитным взаимодействием между 3d-металлом и редкой землей. Взаимодействие между атомами редкой земли слабое. Поэтому предполагается, и это согласуется с нейтронографическими исследованиями, что магнитные моменты 3d-металлов ориентируются преимущественно параллельно друг другу, магнитные моменты атомов редких земель так же параллельно друг другу, но анипараллельно магнитным моментам атомов 3d-металлов. Фиксация ориентаций магнитных моментов атомов зависит как от распределения обменных взаимодействий, так и от локальной одноионной магнитной анизотропии. Для рассматриваемых пленок характерна одноосная макроскопическая магнитная анизотропия с осью легчайшего намагничивания перпендикулярной плоскости пленки или лежащей в ней в зависимости от состава, а также от способа и условий приготовления. Вообще говоря, возможны следующие типы магнитных структур таких аморфных сплавов (рис. 60), для которых часто пользуются специальной терминологией.

Сперомагнитная структура - магнитная структура полностью неупорядоченная, результирующая намагниченность отсутствует (рис. 60а).

Асперомагнитная структура - результирующая намагниченность не равна нулю и существует выделенное направление ориентации атомных магнитных моментов (рис. 60 а и б).

Сперимагнитная структура - результирующая намагниченность не равна нулю и имеется выделенное направление ориентации атомных магнитных моментов,

- Рис.60. Возможные магнитные структуры аморфных пленок сплавов 3d-металлов с редкими землями.
 - а) Сперомагнитная,
 - б) и в) асперомагнитная,
 - r) и д) сперимагнитная.

образующих две (или более) неэвивалентные магнитные "подрешетки" с антиферромагнитным взаимодействием между ними (рис. 60 г и д).

Сперимагнитные структуры будут рассмотрены ниже. Примером асперомагнитной структуры являются пленки Fe - Y, Co - Nd. Магнитные моменты Co и Nd направлены преимущественно в одну сторону хотя взаимодействие антиферромагнитное. Объясняется это тем, что у атома Nd S и L направлены в противоположные стороны и в магнитном моменте преобладает орбитальная составляющая, поэтому хотя спиновый магнитный момент и ориентирован главным образом против магнитных моментов атомов Co, результирующий магнитный момент направлен преимущественно в ту же сторону. Примером сперимагнетизма могут служить пленки Co - Gd, Co - Dy (рис. 60г) и Fe - Dy (рис.60д). У таких

сплавов возможны точки компенсации, температуру которых можно менять, подбирая соответствующий состав. Пример такой пленки приведен на рис. 61.

Рис.61. Температурная зависимость намагниченности насыщения аморфного сплава (Gd₁₅Co₈₅)_{0,859}Mo_{0,141} (сплошная линия) и расчетные намагниченности «подрешеток» Со и Gd (штриховые линии) [35].

Спиновые стекла

Могут быть получены такие вещества, в которых обменные взаимодействия между магнитными атомами различаются как по величине так и по знаку. Таких сильно разупорядоченных веществ известно довольно много. Примерами могут служить Eu $_x$ Sr_{1-x} S и сплавы Cu_{1-x}Fe_x, Cu_{1-x}Mn_x, Au_{1-x}Mn_x при малых x. В первом случае в EuS, который является ферромагнетиком, часть магнитных атомов железа заменена на немагнитные атомы стронция. В EuS атомы европия, являющиеся ближайшими соседями, связаны обменным взаимодействием ферромагнитно, а взаимодействие со следующими соседями антиферромагнитное при этом величина обменного интеграла всего в два раза меньше ферромагнитного. При частичном неупорядоченном замещении атомов европия на диамагнитные атомы стронция спины атомов европия оказываются под действуем конкурирующих обменных знака . Возникновение в этом случае магнитного взаимодействий разного упорядочения с дальним порядком уже не возможно, но обменные взаимодействия все же оказываются достаточно сильными, чтобы ниже некоторой температуры T_f зафиксировать направления спинов, но эти направления не упорядочены. Возникает состояние спинового стекла сперомагнитного типа, схематически изображенного на рис.62. Магнитная фазовая диаграмма таких твердых растворов

Рис. 62. Ориентация магнитных моментов атомов в спиновом стекле

может содержать и три фазы – в некоторой области составов возможен при охлаждении переход из парамагнитной фазы сначала в ферромагнитную, а затем уже в фазу спинового стекла (рис.63)

- 1 парамагнитная фаза,
- 2 ферромагнитная фаза,
- 3 фаза спинового стекла.

В случае сплавов между магнитными атомами существует взаимодействие РККИ, которое, как уже отмечалось в §3.5, знакопеременное и при небольшой

концентрации магнитного 3d - металла разные пары этих атомов оказываются с одинаковой вероятностью связаны ферромагнитным или антиферромагнитным взаимодействиями. Возникновения дальнего порядка спинов не возможно, но спины фиксируются по хаотически распределенным направлениям. В состоянии спинового стекла в отсутствии магнитного поля усредненный по конфигурациям магнитный момент атома равен нулю, следовательно, средний . намагниченность равна нулю.

У веществ с дальним магнитным порядком конфигурации магнитных моментов соответствует один или в случае доменной структуры несколько минимумов энергии. Для фазы же спинового стекла во всей области ее существования одной и той же конфигурации обменных интегралов в локальной области, т.е. одному и тому же фиксированному распределению атомов в пространстве, соответствует бесконечное число различных магнитных конфигураций, каждой из которых соответствует минимум энергии . В системе магнитных моментов происходит случайная диффузия в пространстве таких минимумов энергии, в процессе которой преодолеваются потенциальные барьеры различной высоты, что приводит к широкому диапазону времен магнитной релаксации . Таким образом магнитное стекло является термодинамически неустойчивым неравновесным метастабильным магнитным состоянием . Система магнитных моментов при любых наблюдениях находится в квазиравновесном состоянии, соответствующем одному или нескольким минимумам потенциальной энергии, отсюда неэргодичность магнитных свойств, которая особенно ярко проявляется на магнитной восприимчивости . При переходе из парамагнитного состояния в фазу спинового стекла наблюдается максимум магнитной восприимчивости, температура которого

Рис.64. Температурная зависимость χ' и χ'' для $Eu_{0,2}Sr_{0,8}S$ на разных частотах [37].

В области максимума χ' резко возрастает χ'' , т.е. потери . Эти свойства совершенно отличаются от того, что должно было бы наблюдаться при фазовом переходе второго рода .

При измерениях в постоянном магнитном поле при температурах ниже T_f восприимчивость, измеренная при охлаждении от высоких температур в магнитном поле χ_{FC} (field cooled), существенно отличается от восприимчивости, измеренной после охлаждения образца в нулевом магнитном поле при нагревании χ_{ZFC} (zero field coold). Для спинового стекла $Cu_{0.98}Mn_{0.02}$ температурные зависимости χ_{FC} и χ_{ZFC} приведены на рис.65. Видно, что χ_{FC} практически не зависит от температуры. Таким образом магнитные свойства спинового стекла зависят от предыстории образца. Кроме того χ_{ZFC} меняется со временем по логарифмическому закону $\chi(t) = \chi_{ZFC} + S \ln t$, (3.99)

где S называется коэффициентом последействия, стремясь к χ_{FC} . Это так называемый эффект старения.

Свойства спиновых стекол на различных частотах и эффект старения показывают, что релаксация происходит начиная с ~ 10⁻¹²с до 10²⁰ ÷ 10⁴⁰с, что превосходит время жизни Вселенной. Наблюдение такой длительной релаксации возможно благодаря ее логарифмическому характеру и из 30 - 50 порядков

Рис.65. Температурная зависимость χ_{FC} и χ_{ZFC} для $Cu_{1-x}Mn_x$ [38].

релаксации является следствием сплошного спектра времен релаксации . Таким образом спиновые стекла всегда находятся в неравновесном состоянии .

115

Магнитная анизотропия и магнитострикция

§ 4.1. Магнитная анизотропия

Обменное взаимодействие при простейшем рассмотрении, как, например, в модели Гайзенберга, считается изотропным, т.е. зависит только от взаимной ориентации магнитных моментов атомов в кристалле и не зависит от ориентации этих относительно кристаллографических осей. В то же время моментов магнитоупорядоченном состоянии магнитные моменты определенным образом ориентированы в кристаллической решетке. Это относится как к ферромагнетикам так и к антиферромагнетикам. В случае ферромагнетиков направление, по которому направлена намагниченность, называется осью легчайшего или просто легкого намагничивания. Для отклонения намагниченности от этой оси требуется затратить определенную энергию, которую принято называть энергией анизотропии. направления . Существуют по которым труднее всего ориентировать намагниченность. Такие направления называются осями трудного намагничивания.

В случае антиферромагнетиков, как уже отмечалось, ось по которой направлены намагниченности магнитных подрешеток, называется антиферромагнитной осью или осью антиферромагнетизма.

Магнитная анизотропия кристалла с магнитным упорядочением, имеющего идеальную кристаллическую решетку, называется магнитной кристаллографической анизотропией. Далее мы увидим, что могут быть и другие вклады в магнитную анизотропию, обусловленные дефектами, механическими напряжениями, включениями и т.п. Часто эти дополнительные вклады оказываются больше кристаллографической анизотропии.

Каковы источники магнитной анизотропии? Наиболее очевидным является просто диполь-дипольное взаимодействие между магнитными моментами атомов. Для двух магнитных диполей μ_1 и μ_2 , параллельных или антипараллельных друг другу и находящихся на расстоянии г друг от друга, энергия диполь-дипольного взаимодействия равна

$$E_{\partial} = \pm \frac{\mu_1 \mu_2}{r^3} (1 - 3\cos^2 \varphi), \qquad (4.1)$$

где ф - угол между радиусом-вектором, соединяющим диполи и направлением диполей. Знак плюс соответствует параллельным, а знак минус антипараллельным диполям . Поскольку E_∂ определяется углом ϕ , то отсюда следует зависимость диполь-дипольной энергии от того, как направлены дипольные моменты в кристаллической решетке. Оценки показывают, что величина диполь-дипольного взаимодействия невелика и обычно составляет незначительную часть энергии кристаллографической анизотропии . Исключением являются некоторые редкоземельные металлы, где вклад может быть существенным благодаря большим магнитным моментам атомов и близким расположением самих атомов друг к

другу. Следует отметить, что для кубических кристаллов энергия дипольдипольного взаимодействия изотропна и не дает вклада в энергию анизотропии.

В большинстве магнитоупорядоченных веществ основной причиной кристаллографической магнитной анизотропии является спин-орбитальное взаимодействие. При этом принято различать два источника анизотропии - одноионную анизотропию и анизотропию обменного взаимодействия.

Одноионная анизотропия является прямым следствием анизотропии магнитных свойств отдельных ионов, находящихся под действием кристаллического поля, т.е. зависимости энергии иона от направления его магнитного момента. В случае атомов 3d-металлов энергия кристаллического поля больше спин-орбитального взаимодействия и в результате действия кристаллического поля орбитальный момент определенным образом ориентируется относительно кристаллографических осей. Благодаря спин-орбитальному взаимодействию определенную ориентацию приобретает и спин.

в основном состоянии орбитальный момент заморожен, но обычно спин-Часто орбитальное взаимодействие приводит к подмешиванию ближайшего возбужденного состояния и частичному "размораживанию" орбитального момента. У редких земель из-за экранирования 4f-оболочки воздействие кристаллического поля не столь велико и более сильное спин-орбитальное взаимодействие приводит к сложению орбитального момента со спином . Орбитальная составляющая полного момента связана с соответствующим угловым распределением электронной плотности 4f-оболочки, взаимодействие которой с кристаллическим полем приводит к зависимости энергии иона от ориентации полного магнитного момента относительно кристаллографических осей, т.е. положения энергетических уровней иона зависят от ориентации магнитного момента атома. Минимумы энергии основного состояния на такой зависимости соответствуют направлениям осей легкого намагничивания ферромагнетика и антиферромагнитным осям антиферромагнетика. У ферромагнетика изменения энергии при поворотах магнитных моментов атомов, суммируясь по всему объему образца, приводят к макроскопической энергии магнитной анизотропии.

В случае анизотропного обменного взаимодействия энергия анизотропии связана с зависимостью энергии обменного взаимодействия от перекрытия электронных оболочек самих магнитных ионов (в случае прямого обмена) или электронных оболочек магнитных ионов и промежуточных катионов (в случае косвенного обмена), которое в свою очередь зависит от взаимного пространственного расположения электронной плотности в этих оболочках, а, следовательно, от их расположения относительно кристаллографических осей. Изменение направления спин-орбитальному взаимодействию приводит к изменению спина благодаря орбитального момента, т.е. к некоторому изменению формы направления электронных оболочек отсюда и к изменению перекрытия и, следовательно, обменного взаимодействия. Таким образом и в этом случае магнитная анизотропия являются следствием спин-орбитального взаимодействия.

Энергию магнитной анизотропии ферромагнетика можно разложить в ряд по степеням проекции намагниченности на оси координат или, что практически одно и то же, по степеням тригонометрических функций углов между **M** и осями координат. Такое разложение должно содержать только четные степени компонент **M** или тригонометрических функций, так как энергия инвариантна относительно обращения времени, тогда как проекции **M** меняют знак. Кроме того разложение должно быть инвариантно относительно всех операций симметрии, входящих в точечную группу кристалла. Энергия анизотропии обычно измеряется в расчете на

единицу объема . Такое представление энергии магнитной анизотропии является феноменологическим и коэффициенты перед тригонометрическими функциями не раскрывают физических причин анизотропии .

В случае одноосных кристаллов энергию анизотропии можно представить в виде ряда

$$E_a = \sum_n k_n \sin^{2n} \alpha, \qquad (4.1)$$

где κ_n - константа анизотропии α - угол меду **М** и осью легкого намагничивания. Обычно достаточно ограничится одним или двумя членами разложения

$$E_a = k_1 \sin^2 \alpha + k_2 \sin^4 \alpha. \tag{4.2}$$

При $\kappa_1 > 0$ и $\kappa_2 = 0$ ферромагнетик имеет ось легкого намагничивания, а при $\kappa_1 < 0$ и

У антиферромагнетика энергия магнитной анизотропии также можно представить в виде разложения по тригонометрическим функциям и в общем случае надо участь направление намагниченности каждой подрешетки. В отличии от ферромагнетиков при рассмотрении поворота намагниченностей подрешеток должны учитываться не только энергия магнитной анизотропии, энергия взаимодействия намагниченностей подрешеток с внешним магнитным полем, но и обменные взаимодействия. Подробнее эта проблема рассмотрена в гл.6. По аналогии с ферромагнетиками, если антиферромагнитная ось является единичной, то антиферромагнетик называется типа "легкая ось", если намагниченности подрешеток лежат в базисной плоскости, антиферромагнетик называется типа "легкая плоскость". Для двухподрешеточного одноосного антиферромагнетика при учете только первой константы анизотропии энергия магнитной анизотропии запишется как

$$E_a = k' \left(\sin^2 \theta_A + \sin^2 \theta_B \right), \tag{4.3}$$

где θ_A и θ_B – углы, которые составляют намагниченности подрешеток с антиферромагнитной осью, и, если $\theta_A = \theta_B = \theta$, то $E_a = 2k' \sin^2 \theta = k \sin^2 \theta$.

У кубического ферромагнетика энергию анизотропии принято записывать в виде разложения по направляющим косинусам. Так как три оси эквивалентны, то коэффициенты перед первыми возможными членами разложения типа $\cos^2 \alpha_i$ одинаковы, а так как $\cos^2 \alpha_1 + \cos^2 \alpha_2 + \cos^2 \alpha_3 \equiv 1$, то совокупность таких членов не даст угловой зависимости и их можно опустить. В разложении останутся члены четвертого и шестого порядка. Это соответственно $\cos^2 \alpha_1 \cos^2 \alpha_2 + \cos^2 \alpha_3 = 1 + \cos^2 \alpha_2 \cos^2 \alpha_1 + \cos^2 \alpha_2 \cos^2 \alpha_3 = 1$, то сов' $\alpha_1 \cos^2 \alpha_2 \cos^2 \alpha_3 + \cos^2 \alpha_3 \cos^2 \alpha_1$ и $\cos^2 \alpha_1 \cos^2 \alpha_2 \cos^2 \alpha_3$. Что касается суммы $\cos^4 \alpha_1 + \cos^4 \alpha_2 + \cos^4 \alpha_3$, то ,

используя тождество $\cos^2 \alpha_1 + \cos^2 \alpha_2 + \cos^2 \alpha_3 \equiv 1$, ее можно выразить через приведенную выше сумму произведений косинусов в квадрате и не включать в разложение. Окончательно, заменяя для краткости $\cos \alpha_i$ просто на α_i , энергия кристаллографической магнитной анизотропии для кубического кристалла запишется в виде :

$$E_{a} = k_{1} (\alpha_{1}^{2} \alpha_{2}^{2} + \alpha_{2}^{2} \alpha_{3}^{2} + \alpha_{3}^{2} \alpha_{1}^{2}) + k_{2} \alpha_{1}^{2} \alpha_{2}^{2} \alpha_{3}^{2} .$$
 (4.4)

При $|k_2| < 9/4 |k_1|$ и 1) $k_1 > 0$ легкими осями являются направления <100>, а трудными <111>; 2) $k_1 < 0$ легкие оси <111> и трудные <100>.

Величины констант магнитной анизотропии для ряда ферромагнитных металлов и ферритов приведены в табл.4.1. Что касается температурной зависимости констант магнитной анизотропии, то их абсолютная величина, как правило, растет с понижением температуры. Для железа, никеля, кобальта и Y₃Fe₅O₁₂ температурные зависимости констант магнитной анизотропии приведены на рис. 66

Не редки случаи , когда при изменении температуры меняются направления намагниченностей подрешеток антиферромагнетика или намагниченности ферромагнетика . Происходят так называемые ориентационные или спин ориентационные магнитные фазовые

переходы . Такие переходы возможны и в результате внешних воздействий , например , под действием магнитного поля (подробнее см. в гл.6) . На рис.66 приведены температурные зависимости констант магнитной анизотропии для железа , кобальта , никеля и $Y_3Fe_5O_{12}$. У кобальта при температурах ниже 520 К легкой осью является гексагональная ось , при повышении температуры k_1 меняет знак , намагниченность отклоняется от гексагональной оси и при $T\cong 580~{\rm K}~k_1=$ - $2k_2~{\rm u}~M_{\rm S}$ ложится в базисную плоскость .¹

Существует несколько экспериментальных способов определения констант магнитной анизотропии. Один из них мы рассмотрим в этом разделе. Константы анизотропии могут быть определены из кривых намагничивания монокристалла ферромагнетика по различным кристаллогрфическим направлениям. В качестве примера рассмотрим намагничивания монокристалла железа (рис.67). Для снятия таких кривых

Рис 67. Намагничивание монокристалла железа по трем кристаллографическим направлениям .

Таблица 4.1

Константы магнитной анизотропии некоторых ферро- и ферримагнетиков

Состав	к ₁ , эрг∙см ⁻³	К ₂ , эрг∙см ³
Fe	$4,6.10^5$	$1,5.10^{5}$
Ni	-5.10^4	$2,3.10^4$
Со	$4,1.10^{6}$	$1,0.10^{6}$
$Y_3Fe_5O_{12}$	$6,5 \cdot 10^3$	
NiFe ₂ O ₄	$-6,2\cdot10^4$	
BaFe ₁₂ O ₁₉	$3,3.10^{6}$	

намагничивания, чтобы избежать полей размагничивания, из монокристалла вырезаются рамки с ребрами, параллельными соответственно осям [100], [110] или [111]. Легкими осями в этом случае являются направления <100>, средними <110> и трудными <111>. Для намагничивания кристалла в любом из направлений <100> достаточно небольшого

¹ При Т≅ 690 К у кобальта происходит переход из гексагональной фазы в кубическую с гранецентрированной элементарной ячейкой.

поля для ликвидации доменной структуры .Такой процесс будет рассмотрен в гл.5, а сейчас для нас важно, только то, что намагничивание произойдет в сравнительно слабом поле. При намагничивании вдоль одного из направлений <110> или <111> сначала в слабых полях пройдут процессы смещения доменных границ, а затем с ростом поля намагниченность будет поворачиваться пока ее направление не совпадет с полем. Этот поворот связан с преодолением сил магнитной анизотропии. Работа затраченная на намагничивание до насыщения в направлении [hkl] равна

$$A_{[hkl]} = \int_{0}^{M_{s}} H dM,$$
(4.5)

т.е. площади , заключенной между кривой намагничивания и осью ординат . Для направления [110] направляющие косинусы в (4.4) $\alpha_1 = \alpha_2 = 1 / \sqrt{2}$ и $\alpha_3 = 0$. Из (4.4) следует , что

$$A_{[110]} - A_{[100]} = 1/4 k_1 , \qquad (4.6)$$

следовательно, $k_1 = 4 (A_{[110]} - A_{[100]})$. Экспериментальная кривая намагничивания вдоль [111] позволяет определить и k_2 . Для [111] $\alpha_1 = \alpha_2 = \alpha_3 = 1/\sqrt{3}$, следовательно,

$$A_{[111]} - A_{[100]} = 1/3 k_1 + 1/27 k_2.$$
(4.7)

Откуда, зная из (4.6) k₁, можно определить k₂.

Существуют и другие методы определения констант магнитной анизотропии. В первую очередь из данных по ферромагнитному резонансу. Для пленок ферритовгранатов, прозрачных в видимой области света, были развиты магнитооптические методы, использующие оптическую регистрацию направления намагниченности или относительной величины магнитной восприимчивости.

Наведенная магнитная анизотропия

Наряду с естественной магнитной кристаллографической анизотропией возможна так называемая индуцированная или наведенная магнитная анизотропия, которая является следствием определенного локального расположения примесных атомов, вакансий, междуузельных атомов и т.п., которое энергетически наиболее благоприятно для данной локальной ориентации намагниченности. Можно сказать, что наведенная анизотропия локально стремится стабилизировать направление намагниченности. Наведенная анизотропия особенно заметна или даже играет определяющую роль в тех случаях, когда кристаллографическая анизотропия невелика. Наведенную анизотропию можно создавать искусственно, что важно при создании некоторых магнитных материалов.

Примером такой обработки является термомагнитный отжиг, т.е. некая термообработка магнитного поля, при которой диффузии В присутствии благодаря примеси упорядочиваются так, что способствуют заданной магнитным полем ориентации намагниченности. Наведенная анизотропия может возникать в процессе роста кристаллов благодаря упорядочению атомов замещения.

Обменная или однонаправленная анизотропия

Интересное явление было обнаружено на мелких размером $100\div1000$ Å слегка окисленных частичках металлического кобальта. Оказалось, что если такие частички охладить в магнитном поле до 77 К, то они обладают однонаправленной анизотропией с намагниченностью, направленной вдоль поля, в котором охлаждались. Соответственно энергию анизотропии можно записать в виде $E_a = -k_d \cos\theta$, где k_d - зависит от площади поверхности частицы. Это явление связано с тем, что окись кобальта

антиферромагнетик с точкой Нееля 300 К. При охлаждении частичек, покрытых пленкой окисла, в магнитном поле магнитные моменты атомов кобальта в первом слое окисла благодаря обменному взаимодействию с поверхностными атомами металла выстраиваются параллельно им, т.е. параллельно приложенному полю. Когда после охлаждения поле отключается, поверхностные атомы кобальта металла и окиси остаются обменно -связанными. Так как повернуть магнитные моменты атомов кобальта в окиси ~104 Э невозможно, то магнитные моменты частичек металла остаются в полях "замороженными" в направлении ранее приложенного поля. Отсюда и возникает однонаправленная анизотропия. Поворот намагниченности частиц конечно возможен, так как с окислом обменно связаны только атомы кобальта на поверхности, а их число мало по сравнению с общим их числом в объеме частицы. Поэтому магнитная анизотропия не столь велика. В дальнейшем обменная анизотропия наблюдалась на системах Fe-FeO, а также в сплавах и окисных системах в области, где могут сосушествовать фазы спонтанной намагниченностью две олна co И вторая антиферромагнитная.

§ 4.2. Магнитострикция

Магнитострикцией называется упругая деформация ферромагнетика при изменении его намагниченности как по величине, так и по направлению. Явление это было обнаружено Джоулем В 1942 г. И является следствием так называемого магнитоупругого взаимодействия. Так как обменное взаимодействие, являющееся причиной магнитного упорядочения , и кристаллическое поле , являющееся причиной магнитной кристаллографической анизотропии, зависят от взаимного расположения атомов, то наличие магнитоупругой связи вполне естественно. При возникновении магнитного упорядочения равновесные положения атомов несколько меняются и соответствуют минимуму суммарной энергии - обменной, анизотропии, упругой. Происходит спонтанная деформация. При этом изменяется объем, что в первую очередь связано с зависимостью обменной энергии от расстояний между атомами. Атомы смещаются, чтобы был выигрыш в обменной энергии, но одновременно увеличивается упругая энергия и новые равновесные положения атомов соответствуют в первую очередь минимуму суммарной энергии этих двух взаимодействий. Объемная магнитострикция экспериментально проявляется при измерении температурных зависимостей относительного удлинения как некая аномалия в точке Кюри. На рис.68 Приведена температурная зависимость коэффициента линейного расширения никеля

Рис 68. Температурная зависимость коэффициента термического расширения никеля (сплошная кривая). Пунктир - то же, если бы не было перехода в ферромагнитное состояние [41].

В точке Кюри имеется небольшой максимум. Обычно относительное изменение объема за счет магнитострикции экстраполированное на низкие температуры невелико ~ 10⁻³.

Те взаимодействия, которые ответственны за магнитную анизотропию, приводят к искажению элементарной ячейки. Поскольку искажение не велико, то обычно при упоминании кристаллографической симметрии магнитоупорядоченного кристалла называют его симметрию в парамагнитном состоянии. Но, строго говоря, например, если в парамагнитном состоянии элементарная ячейка кубическая, то в магнитоупорядоченном состоянии кубической она уже не будет. Деформация происходит и при повороте намагниченности, так как кристаллу энергетически выгоднее несколько деформироваться и этим уменьшить энергию анизотропии.

Для феноменологического описания магнитострикции ферромагнетиков необходимо рассмотреть упругую Φ_y и магнитоупругую Φ_{My} части термодинамического потенциала. Как известно,

$$\Phi_{y} = \frac{1}{2} c_{ijkl} u_{ij} u_{kl}, \qquad (4.8)$$

где c_{ijkl} и $u_{ij}(u_{kl})$ соответственно компоненты тензоров упругой жесткости и деформации . Φ_{MV} можно записать в виде

$$\Phi_{\rm My} = b_{ijkl} u_{ij} \alpha_k \alpha_l \quad , \tag{4.9}$$

Здесь b_{ijkl} - компоненты тензора магнитоупругих постоянных и α_k и α_l - направляющие косинусы намагниченности. Поскольку тензор магнитоупругих постоянных материальный , то число независимых компонент определяется симметрией кристалла. Благодаря тождеству $\alpha_x^2 + \alpha_y^2 + \alpha_z^2 \equiv 1$ даже для кристаллов самой низкой симметрии число независимых компонент сокращается с 36 до 30. Коэффициенты b_{ijkl} зависят от величины намагниченности. В дальнейшем будем интересоваться только той частью Φ_{my} , которая зависит от ориентации намагниченности.

Рассмотрим наиболее простой случай - кубический ферромагнетик . Используя матричные обозначения для коэффициентов упругости , для Φ_y имеем следующее выражение

$$\Phi_{y} = \frac{1}{2}c_{11}\left(u_{xx}^{2} + u_{yy}^{2} + u_{zz}^{2}\right) + c_{12}\left(u_{xx}u_{yy} + u_{yy}u_{zz} + u_{zz}u_{xx}\right) + \frac{1}{2}c_{44}\left(u_{xy}^{2} + u_{yz}^{2} + u_{zx}^{2}\right).$$
(4.10)

Тензор b_{ijkl} для кубических кристаллов имеет три независимых компоненты, но, если учитывать только ту часть $\Phi_{\rm My}$, которая зависит от направления намагниченности, и тождество $\alpha_x{}^2 + \alpha_y{}^2 + \alpha_z{}^2 \equiv 1$, то выражение для $\Phi_{\rm My}$ можно записать только с двумя константами

$$\Phi_{_{My}} = B_1 \Big(u_{_{xx}} \alpha_x^2 + u_{_{yy}} \alpha_y^2 + u_{_{zz}} \alpha_z^2 \Big) + B_2 \Big(u_{_{xy}} \alpha_x \alpha_y + u_{_{yz}} \alpha_y \alpha_z + u_{_{zx}} \alpha_z \alpha_x \Big), \tag{4.11}$$

где $B_1 = b_{xxxx} - b_{xxyy}$ и $B_2 = 4b_{xyxy}$ и называются магнитоупругими постоянными. Для железа $B_1 = -2,9 \cdot 10^7 \, \text{эрг·см}^{-3}$ и $B_2 = 3,2 \cdot 10^7 \, \text{эрг·см}^{-3}$.

Решениями уравнения

124

$$\frac{\partial \left(\Phi_{y} + \Phi_{My}\right)}{\partial u_{ij}} = 0 \tag{4.12}$$

являются равновесные деформации

$$u_{ii} = \frac{B_1 \left[c_{12} - \alpha_1^2 \left(c_{11} + 2c_{12} \right) \right]}{\left(c_{11} - c_{12} \right) \left(c_{11} + 2c_{12} \right)},$$

$$u_{ij} = -\frac{B_2 \alpha_i \alpha_j}{c_{44}}.$$
(4.13)

Для определения относительного удлинения $\Delta l/l$ в направлении, заданном направляющими косинусами β_i , воспользуемся известной формулой

$$\frac{\Delta\lambda}{\lambda} = u_{ij}\beta_i\beta_j. \tag{4.14}$$

Подставив в (4.16) равновесные значения деформации (4.15), получим

$$\frac{\Delta\lambda}{\lambda} = \frac{B_1 \left[c_{12} - \alpha_1^2 \left(c_{11} + 2c_{12} \right) \right]}{\left(c_{11} - c_{12} \right) \left(c_{11} + 2c_{12} \right)} \beta_1^2 + \frac{B_1 \left[c_{12} - \alpha_2^2 \left(c_{11} + 2c_{12} \right) \right]}{\left(c_{11} - c_{12} \right) \left(c_{11} + 2c_{12} \right)} \beta_2^2 + \frac{B_1 \left[c_{12} - \alpha_3^2 \left(c_{11} + 2c_{12} \right) \right]}{\left(c_{11} - c_{12} \right) \left(c_{11} + 2c_{12} \right)} \beta_3^2 - \frac{B_2 \left(\alpha_1 \alpha_2 \beta_1 \beta_2 + \alpha_2 \alpha_3 \beta_2 \beta_3 + \alpha_3 \alpha_1 \beta_3 \beta_1 \right)}{\left(c_{11} - c_{12} \right) \left(c_{11} - c_{12} \right) \left(c_{11} + 2c_{12} \right)} \beta_3^2 - \frac{B_2 \left(\alpha_1 \alpha_2 \beta_1 \beta_2 + \alpha_2 \alpha_3 \beta_2 \beta_3 + \alpha_3 \alpha_1 \beta_3 \beta_1 \right)}{\left(c_{11} - c_{12} \right) \left(c_{11} - c_{12} \right) \left(c_{11} - c_{12} \right) \left(c_{11} + 2c_{12} \right)} \beta_3^2 - \frac{B_2 \left(\alpha_1 \alpha_2 \beta_1 \beta_2 + \alpha_2 \alpha_3 \beta_2 \beta_3 + \alpha_3 \alpha_1 \beta_3 \beta_1 \right)}{\left(c_{11} - c_{12} \right) \left(c_{11} - c_{12} \right) \left(c_{11} - c_{12} \right) \left(c_{11} + 2c_{12} \right)} \beta_3^2 - \frac{B_2 \left(\alpha_1 \alpha_2 \beta_1 \beta_2 + \alpha_2 \alpha_3 \beta_2 \beta_3 + \alpha_3 \alpha_1 \beta_3 \beta_1 \right)}{\left(c_{11} - c_{12} \right) \left(c_{11} + 2c_{12} \right)} \beta_3^2 - \frac{B_2 \left(\alpha_1 \alpha_2 \beta_1 \beta_2 + \alpha_2 \alpha_3 \beta_2 \beta_3 + \alpha_3 \alpha_1 \beta_3 \beta_1 \right)}{\left(c_{11} - c_{12} \right) \left(c_{11} -$$

Отбрасывая члены, не зависящие от α_i , окончательно получим

$$\frac{\Delta\lambda}{\lambda} = -\frac{B_1}{c_{11} - c_{12}} \Big(\alpha_1^2 \beta_1^2 + \alpha_2^2 \beta_2^2 + \alpha_3^2 \beta_3^2 \Big) - \frac{B_2}{c_{44}} \Big(\alpha_1 \alpha_2 \beta_1 \beta_2 + \alpha_2 \alpha_3 \beta_2 \beta_3 + \alpha_3 \alpha_1 \beta_3 \beta_1 \Big).$$
(4.16)

Формулу (4.16) можно рассматривать, как относительное удлинение образца вдоль направления, определенного направляющими косинусами β_i, происходящее благодаря эффекту магнитострикции при условии, что образец намагничен до насыщения в направлении, заданном направляющими косинусами α_i . Исходным состоянием в этом случае является гипотетическое с нулевой спонтанной намагниченностью. Обычно экспериментально эффект магнитострикции измеряют как деформацию при намагничивании ферромагнетика в исходном состоянии полностью размагниченном. Пусть легкими осями кубического ферромагнетика являются оси <100>. В этом случае имеется всего шесть типов доменов. Магнитострикционная деформация каждого из доменов не зависит от того, в каком направлении вдоль легкой оси направлена намагниченность. Поэтому с точки зрения деформации имеется три типа доменов. В направлении с направляющими косинусами β_i деформации каждого из трех видов доменов будут следующими :

$$\alpha_{1} = \pm 1 ; \ \alpha_{2} = \alpha_{3} = 0 , \qquad \frac{\Delta \lambda}{\lambda} = -\frac{B_{1}}{c_{11} - c_{12}} \beta_{1}^{2};$$

$$\alpha_{1} = \alpha_{3} = 0 , \ \alpha_{2} = \pm 1 , \qquad \frac{\Delta \lambda}{\lambda} = -\frac{B_{1}}{c_{11} - c_{12}} \beta_{2}^{2}; \qquad (4.17)$$

$$\alpha_{1} = \alpha_{2} = 0 , \ \alpha_{3} = \pm 1 , \qquad \frac{\Delta \lambda}{\lambda} = -\frac{B_{1}}{c_{11} - c_{12}} \beta_{3}^{2}.$$

Деформация всего образца является суммой деформаций отдельных доменов. Умножив деформацию в каждом из видов доменов на 1/3 - его долю в общем объеме образца и сложив эти деформации, получим деформацию размагниченного образца.

$$-\frac{1}{3} \cdot \frac{B_1}{c_{11} - c_{12}} \left(\beta_1^2 + \beta_2^2 + \beta_3^2\right) = -\frac{B_1}{3(c_{11} - c_{12})}.$$
(4.18)

Теперь, чтобы определить деформацию относительно размагниченного состояния следует из (4.16) вычесть (4.18). Итак получим

$$\frac{\Delta\lambda}{\lambda} = \lambda_{\alpha\beta} = -\frac{B_1}{c_{11} - c_{12}} \left(\alpha_1^2 \beta_1^2 + \alpha_2^2 \beta_2^2 + \alpha_3^2 \beta_3^2 - \frac{1}{3} \right) - \frac{B_2}{c_{44}} \left(\alpha_1 \alpha_2 \beta_1 \beta_2 + \alpha_2 \alpha_3 \beta_2 \beta_3 + \alpha_3 \alpha_1 \beta_3 \beta_1 \right).$$
(4.19)

 $\lambda_{\alpha\beta}$ принято называть константами магнитострикции . Обычно для кубических кристаллов приводятся величины констант магнитострикции вдоль <100> и <111>, т.е. соответственно λ_{100} λ_{111} , для которых из (4.19) получим

$$\lambda_{100} = -\frac{2B_1}{3(c_{11} - c_{12})}; \qquad \lambda_{1111} = -\frac{B_2}{3c_{44}}.$$
(4.20)

Выразив B1 и B2 через λ_{100} и λ_{111} и подставив в (4.19), получим окончательную формулу для $\lambda_{\alpha\beta}$

$$\frac{\Delta\lambda}{\lambda} = \lambda_{\alpha\beta} = \frac{3}{2}\lambda_{100} \left(\alpha_1^2\beta_1^2 + \alpha_2^2\beta_2^2 + \alpha_3^2\beta_3^2 - \frac{1}{3}\right) + 3\lambda_{111} \left(\alpha_1\alpha_2\beta_1\beta_2 + \alpha_2\alpha_3\beta_2\beta_3 + \alpha_3\alpha_1\beta_3\beta_1\right).$$
(4.21)

Магнитострикционные константы для некоторых материалов приведены в табл.4.2.

Таблица 4.2

Материал	Т, К	$\lambda_{100} \cdot 10^6$	$\lambda_{111} \cdot 10^{6}$
Fe	300	25,8	-18,6
Ni	300	-62,0	-24,0
NiFe ₂ O ₄	300	-63,0	-26,0
$Y_3Fe_5O_{12}$	300	-1,40	-2,80
$Gd_3Fe_5O_{12}$	4,2	5,1	8,3
Tb ₃ Fe ₅ O ₁₂	4,2	1270	2460

Константы магнитострикции некоторых кристаллов

Явление магнитострикции, как мы видим, дает вклад в изменение свободной энергии кристалла при отклонении намагниченности от легкой оси. При рассмотрении магнитной кристаллографической анизотропии это не учитывалось. Чтобы получить выражение для полной энергии анизотропии следует к (4.4) добавить Φ_y и Φ_{My} , т.е. (4.9) и (4.10). После подстановки в эти формулы равновесных значений деформации, в которых B_1 и B_2 выражены через λ_{100} и λ_{111} , при учете в (4.4) только k_1 для полной энергии магнитной анизотропии кубического кристалла получим

$$F'_{a} = \left(k_{1} + k'_{1}\right) \left(\alpha_{1}^{2} \alpha_{2}^{2} + \alpha_{2}^{2} \alpha_{3}^{2} + \alpha_{3}^{2} \alpha_{1}^{2}\right),$$
(4.22)

где $k_1' = \frac{9}{4} \Big[(c_{11} - c_{12}) \lambda_{100}^2 - 2c_{44} \lambda_{111}^2 \Big]$. Различие между k_1 и $(k_1 + k_1')$ в том, что k_1 является константой анизотропии при постоянной деформации, а $(k_1 + k_1')$ при постоянных напряжениях. Величина k_1' , как правило, не велика и составляет несколько процентов от k_1 .

Если к кристаллу приложены механические напряжения σ_{ij} , то появится дополнительный вклад в энергию $u_{ij}\sigma_{ij}$. Чтобы получить полную энергию этот дополнительный вклад надо добавить к сумме Φ_y (4.9), Φ_{my} (4.11) и E_a (4.4). Минимизация такой общей энергии даст новые равновесные значения компонент тензора деформации. Если приложены напряжения растяжения или сжатия и они однородные и равны σ , то

$$\sigma_{ij} = \sigma \gamma_i \gamma_{j,} \tag{4.23}$$

где γ_i - направляющие косинусы приложенного напряжения относительно осей кристалла. Можно показать, что дополнительная энергия механических напряжений при равновесных деформациях дается следующей формулой

$$F_{\sigma} = -\frac{3\sigma}{2} \Big[\lambda_{100} \Big(\alpha_x^2 \gamma_x^2 + \alpha_y^2 \gamma_y^2 + \alpha_z^2 \gamma_z^2 \Big) + 2\lambda_{111} \Big(\alpha_x \alpha_y \gamma_x \gamma_y + \alpha_y \alpha_z \gamma_y \gamma_z + \alpha_z \alpha_x \gamma_z \gamma_x \Big) \Big].$$
(4.24)

В случае слабой анизотропии магнитострикции , т.е. $\lambda_{100}\,{\cong}\lambda_{111}=\lambda_s$, (4.24) принимает простой вид

$$F_{\sigma} = -\frac{3}{2}\lambda_s \sigma \cos^2 \varphi, \qquad (4.25)$$

где φ - угол между M_s и направлением однородного напряжения. При малой естественной кристаллографической анизотропии и больших напряжениях энергия F_{σ} может иметь существенное значение. Из (4.25) видно, что роль константы анизотропии играет коэффициент $\frac{3}{2}\lambda_s\sigma$. Таким образом под влиянием механических напряжений магнитная анизотропия кубического кристалла может стать одноосной, при этом знак константы наведенной анизотропии зависит от знаков λ_s и σ .

§ 4.3. Слабый ферромагнетизм

У многих антиферромагнетиков особенности кристаллической структуры таковы, относящиеся к подрешеткам противоположно направленными что атомы, с намагниченностями, находятся в не совсем эквивалентных кристаллографических положениях, поэтому на них действуют неодинаковые силы анизотропии. Это может (если допускает симметрия кристалла) привести к тому, что намагниченности неколлинеарными, ИХ подрешеток становятся нарушается точная взаимная компенсация и появляется небольшая спонтанная намагниченность, которая составляет $10^{-2} \div 10^{-5}$ от номинальной Неколлинеарность может быть связана как с всего анизотропным косвенным обменным взаимодействием, так и с одноионной анизотропией . Явление возникновения такой небольшой спонтанной намагниченности называется слабым ферромагнетизмом, а вещества, у которых оно наблюдается, называются слабыми ферромагнетиками.

Наличие небольшой спонтанной намагниченности у гематита (α-Fe₂O₃) и у ряда солей 3d - металлов было известно давно И большинством исследователей приписывалось наличию в образцах ферромагнитных примесей, откуда появился термин "паразитный ферромагнетизм", который встречается еще и сейчас в зарубежной литературе. По мере получения все более чистых кристаллов стало ясно, наличие спонтанной намагниченности есть свойство самих кристаллов и ЧТО А.С.Боровиком-Романовым было высказано предположение, что причиной является неколлинеарность магнитных подрешеток. Теоретическое обоснование этой идеи дано И.Е.Дзялошинским.

Рассмотрим появление слабого ферромагнетизма на примере ромбоэдрических карбонатов MnCO₃ и CoCO₃, которые относятся к пространственной группе $D_{3d}^{6}(R\overline{3}c)$ и в парамагнитном состоянии имеют следующие элементы симметрии : $2C_{3,3}U_{2,1}I_{2}S_{6,3}\sigma_{d,R}$.

2С3 - Оси третьего порядка, параллельные [111];

3U₂ - оси второго порядка, перпендикулярные [111];

I - инверсия ;

S₆ – зеркально-поворотная ось шестого порядка ;

 σ_d – плоскость скольжения с трансляцией на половину периода вдоль

оси [111] и перпендикулярная оси U₂.

На рис.64 показано расположение магнитных ионов и некоторых элементов симметрии в структуре карбонатов. Магнитные свойства карбонатов хорошо описываются двумя

магнитными подрешетками и магнитная элементарная ячейка совпадает с кристаллохимической.

Рис. 69. Расположение магнитных ионов (1,2) вдоль оси [111] в кристаллах карбонатов MnCO₃, FeCO₃ и CoCO₃. с - точка пересечения осей симметрии U₂ с осью [111], d - точки пересечения плоскостей отражения для осей S₆ с осью [111].

Таким образом магнитные атомы 1 и 2 (рис.69) относятся к одной элементарной ячейке, но разным магнитным подрешеткам. Некоторые из перечисленных элементов симметрии переставляют местами магнитные ионы, а некоторые нет.

C₃: 1 \rightarrow 1, 2 \rightarrow 2; U₂: 1 \leftarrow ²2; S₆ и I: 1 \rightarrow 1, 2 \rightarrow 2; σ_d : 1 \leftarrow ²2.

Возможны три вида магнитной структуры (рис.70). В структуре А магнитные моменты подрешеток направлены вдоль оси [111], в структуре В лежат в плоскости симметрии σ_d и в структуре С направлены вдоль оси U₂. Структуру А имеет FeCO₃, структуру В MnCO₃ и CoCO₃.

Структура A обладает всеми элементами симметрии кристаллографической пространственной группы кроме R. Допустим, что при такой магнитной структуре имеется результирующий магнитный момент $\mathbf{m} = \mathbf{m}_{11} + \mathbf{m}_{\perp}$ с составляющими \mathbf{m}_{11} и \mathbf{m}_{\perp} соответственно параллельной и перпендикулярной оси [111]. \mathbf{m}_{\circ} инвариантно, а \mathbf{m}_{A} не инвариантно относительно оси C₃, поэтому m может быть инвариантно относительно этой операции симметрии только при $\mathbf{m} = 0$. Таким образом в структуре A слабый ферромагнетизм не возможен, действительно, FeCO₃ не обладает слабым магнитным моментом.

В структуре В магнитные моменты лежат в плоскости σ_d (перпендикулярной к плоскости рисунка) и элементами симметрии являются I, U_2, σ_d , которые допускают повороты магнитных моментов ионов 1 и 2 навстречу друг другу с выходом из плоскости σ_d , что приводит к появлению результирующего момента $\mathbf{m} \neq 0$ вдоль оси U_2 (рис.71). Действительно, MnCO₃ и CoCO₃ являются слабыми ферромагнетиками.

Классическим примером влияния магнитной симметрии кристалла на возможность появления слабого ферромагнитного момента является гематит α -Fe₂O₃, имеющий ромбоэдрическую элементарную ячейку с четырьмя атомами железа. При 250 К в гематите имеет место магнитный спинориентационный фазовый переход, т.е. изменяется магнитная структура. При T < 250 К магнитные моменты ионов железа параллельны оси [111] кристалла, а при T > 250 К вплоть до точки Нееля (950 К) лежат в базисной плоскости. В первом случае слабый ферромагнетизм запрещен, а во втором магнитная структура его допускает. Действительно, небольшая спонтанная намагниченность наблюдается только в интервале температур между 250К 950К.

Симметрийные соображения позволяют установить общие условия возможности слабого ферромагнетизма. Рассмотрим случай возникновения коллинеарного антиферромагнетика двумя магнитными подрешетками кристаллографически с эквивалентных атомов и пусть пространственная группа кристалла содержит инверсию I или трансляцию T и эти элементы симметрии меняют местами магнитные подрешетки, т.е. магнитная пространственная группа содержит элементы IR или TR. Тогда, с одной стороны, действие этих операций симметрии на намагниченность т ничего не должно было бы изменить, т.е. (IR) $\mathbf{m} = \mathbf{m}$ или

 $(TR)\mathbf{m} = \mathbf{m}$. С другой стороны, действие на вектор намагниченности таких операций симметрии приводит к $(IR)\mathbf{m} = -\mathbf{m}$ и $(TR)\mathbf{m} = -\mathbf{m}$. Совместимость результатов возможна только при $\mathbf{m} = 0$. Таким образом при наличии в пространственной группе кристалла инверсии или трансляции, меняющей местами магнитные подрешетки, слабый ферромагнетизм не возможен.

Удобно назвать антиферромагнитную структуру четной относительно данной операции симметрии, если последняя переставляет атомы в пределах одной и той же магнитной подрешетки, а если меняются местами атомы, относящиеся к разным подрешеткам, то такую антиферромагнитную структуру можно назвать нечетной. Используя эту терминологию и обобщая полученное выше заключение об условиях невозможности существования слабого ферромагнетизма, можно теперь сформулировать уже следующее условие существования слабого ферромагнетизма (Туров, 1963 г.) : слабый ферромагнетизм возможен лишь в тех случаях, если антиферромагнитная структура является четной относительно всех трансляций решетки и центра симметрии, если таковой имеется в кристаллографической пространственной группе кристалла. Из этого общего вывода следует, что для существования слабого ферромагнетизма необходимо : 1) совпадение магнитной и кристаллографической элементарных ячеек, 2) совпадение направлений магнитных моментов во всех узлах, относящихся к одной и той же решетке Браве, а также в узлах, преобразующихся друг в друга центром симметрии.

Очень результативным оказалось феноменологическое рассмотрение слабых ферромагнетиков, основанное на теории Ландау и Лифшица фазовых переходов второго рода. В разложение термодинамического потенциала вводятся члены, которые инвариантны относительно всех операций симметрии кристалла и линейные

по компонентам намагниченности, которые определяются из условия $\frac{\partial \Phi}{\partial T} = 0$ при H = 0

. Происхождение таких членов может быть двоякое, но связано в обоих случаях с некоторой неэквивалентностью положений магнитных ионов, относящихся к разным подрешеткам.

В первом случае из-за комбинации эффектов косвенного обменного взаимодействия и спин-орбитальной связи возникает член вида $D[S_1 \times S_2]$, который

описывает так называемый антисимметричный обмен И соответствует взаимодействию, стремящемуся сделать подрешетки неколлинеарными. Здесь D векторный энергетический параметр . При рассмотрении разложения Ф удобнее вместо S_1 и S_2 ввести **m** и l по (3.78), такая замена приведет к появлению членов вида $m_{\alpha}l_{\beta}$, где α и β x, y u z. Какие конкретно члены будут инвариантными относительно поворотов и отражений, входящих в совокупность элементов симметрии кристалла, надо рассматривать отдельно для каждого кристалла. Если симметрия кристалла не допускает слабый ферромагнетизм, то таких членов не должно быть . Действительно, при нечетной антиферромагнитной структуре относительно трансляций и центра инверсии при действии ЭТИХ элементов симметрии I меняет знак, m остается неизменным и, следовательно, члены вида т_αl_β в разложении термодинамического потенциала не являются инвариантными.

Во втором случае неэквивалентность кристаллографических положений, занимаемых атомами разных подрешеток, являются причиной того, что одноионная магнитная анизотропия, связанная со спин-орбитальным взаимодействием, приводит к непараллельности намагниченностей подрешеток. Отражением этого эффекта одноионной анизотропии является наличие в разложении Ф членов вида $m_{i\alpha}m_{i\beta}$, где *i*- номер подрешетки и α , $\beta = x$, y, z. В случае, когда намагниченности лежат в плоскости xy, в разложении присутствует член $F(m_{1x}m_{1y} - m_{2x}m_{2y})$. Члены такого вида возможны у некоторых тетрагональных кристаллов.

Для карбонатов разложение Φ , ограничиваясь инвариантами второго порядка, можно записать в следующем виде :

$$\Phi = \frac{A}{2}\mathbf{l}^2 + \frac{B}{2}\mathbf{m}^2 + \frac{a}{2}l_z^2 + \frac{b}{2}m_z^2 + d(l_xm_y - l_ym_x) - \mathbf{mH}.$$
(4.26)

Здесь считается, что ось *z* совпадает с осью третьего порядка кристалла, а ось *x* или *y* с одной из осей второго порядка. Все члены разложения инвариантны относительно операций симметрии кристалла. Например, ось второго порядка, скажем, совпадающая с осью *x*, меняет местами подрешетки (см. рис.69 и 70в) и одновременно меняет знаки S_{1y} и S_{2y} , но знаки S_{1x} и S_{2x} не меняет. Поэтому $l_x = S_{1x} - S_{2x}$ и $m_y = S_{1y} + S_{2y}$ в результате действия оси второго порядка меняют знак , а l_y = $S_{1y} - S_{2y}$ и $m_x = S_{1x} + S_{2x}$ не меняют. Отсюда следует, что $l_x m_y$ и $l_y m_x$ не изменяются в результате поворота вокруг оси второго порядка. В общем случае для того чтобы разложение Φ второго порядка по l_i и m_j было инвариантным относительно всех преобразований симметрии пространственной группы кристалла, необходимо чтобы в разложение входили комбинации таких l_i и m_j , которые преобразуются по одним и тем же неприводимым представлениям пространственной группы кристалла.

В разложении (4.26), как и в случае полностью скомпенсированного антиферромагнетика, первые два члена характеризуют обменное взаимодействие, третий и четвертый одноосную магнитную анизотропию. В парамагнитной фазе A > 0 и B > 0 и минимуму Φ при H = 0 соответствует l = 0 и m = 0. С понижением температуры A уменьшается, в точке фазового перехода обращается в ноль и далее становится отрицательным. При этом, если пренебречь членом с коэффициентом d и если B > 0, в точке фазового перехода и при более низких температурах, то это

131

Рис. 70. Три возможных ориентации намагниченностей магнитных подрешеток в карбонатах 3d-металлов - FeCO3 , MnCO3 и CoCO3

 $d(l_x m_y - l_y m_x)$ приводит к появлению слабого ферромагнитного момента. В этом случае минимизация Φ по компонентам **m** при постоянном значении l^2 сводится к уравнениям

$$Bm_{x} - dl_{y} = 0,$$

$$Bm_{y} + dl_{x} = 0,$$

$$Bm_{z} + bm_{z} = 0,$$

$$(l_{x}^{2} + l_{y}^{2}) + l_{z}^{2} = l_{\perp}^{2} + l_{\uparrow\uparrow}^{2} = l^{2}.$$
(4.27)

Решение этих уравнений приводит к двум типам магнитного упорядочения :

$$m_{x} = m_{y} = m_{z} = 0; l_{x} = l_{y} = 0; l_{z} \neq 0.$$

$$m_{x} = \frac{d}{B}l_{y}; m_{y} = -\frac{d}{B}l_{x}; m_{z} = m_{\uparrow\uparrow} = 0; m_{\perp} = m_{S} = \sqrt{m_{x}^{2} + m_{y}^{2}} = \frac{d}{B}\sqrt{l_{x}^{2} + l_{y}^{2}} = \frac{d}{B}l_{\perp} = \frac{d}{B}l.$$
(4.28)

Таким образом мы получили тот же результат, что и при симметрийном рассмотрении - если намагниченности подрешеток направлены вдоль оси кристалла, то слабого ферромагнитного момента нет, если же они лежат в базисной плоскости, то он возможен. Для того, чтобы определить какая структура соответствует минимуму Φ , подставим (4.27) в разложение (4.26). В первом случае получим $\Phi = \frac{1}{2}(A+a)l^2$, а во втором $\Phi = \frac{A}{2}l^2$. Таким образом все зависит от знака

коэффициента *a*. Если *a*<0, то реализуется чисто антиферромагнитная структура. Чтобы определить как располагается вектор **l** в базисной плоскости во втором случае, необходимо учесть в разложении Ф инварианты более высокого порядка. Из (4.28) видно, что величина спонтанного момента определяется отношением $\frac{d}{B}$ и поэтому во столько раз меньше номинального во сколько магнитное взаимодействие меньше обменного. Находя равновесные значения компонент намагниченности m_{\parallel} и m_{\perp} при $H \neq 0$ из разложения (4.26), получим

$$m_{\uparrow\uparrow} = \frac{1}{B+b} H_{\uparrow\uparrow}$$

(4.29)

 $m_{\perp} = m_S + \chi_{\perp} H_{\perp} = \frac{d}{B} l + \frac{1}{B} H_{\perp}.$

(4.30)

В (4.30) считается ,что прикладываемое поле больше поля анизотропии в базисной плоскости , поэтому $\mathbf{m}_{S} \parallel \mathbf{H}_{\perp}$. Слабый ферромагнитный момент можно рассматривать , как результат действия некого эффективного поля H_{D} , которое обычно называют полем Дзялошинского . Используя (4.28) и (4.30), получим

$$H_D = \frac{m_S}{\chi_\perp} = dl.$$

(4.31)

Величина H_D для разных кристаллов лежит в пределах $10^3 \div 10^4$ Э, т.е. на один два порядка меньше обменного поля .

Рис. 71. Образование результирующего магнитного момента m у карбонатов со слабым ферромагнетизмом. S_1 и S_2 намагниченности и α - угол скоса магнитных подрешеток.

Поле Дзялошинского не только приводит к появлению спонтанного момента ниже точки Нееля, но и влияет на магнитные свойства в базисной плоскости непосредственно выше точки Нееля. Приложение поля в этой плоскости вызывает намагниченности, которая взаимодействия появление за счет Дзялошинского приводит к возникновению индуцированного полем антиферромагнитного упорядочения, которое в свою очередь из-за неколлинеарности подрешеток дает увеличение намагниченности . В результата имеет место увеличение χ_{\perp} и в точке Нееля в отличии от скомпенсированного антиферромагнетика наблюдается острый максимум χ_{\perp} , часто весьма значительный. На рис.72 приведены температурные зависимости их обратных величин для CoCO₃ χı a также И χ,

Рис.72. Температурная зависимость магнитной восприимчивости СоСО3 [43].

Довольно обширным и хорошо изученным классом слабых ферромагнетиков являются так называемые ортоферриты. Общая формула ортоферритов RFeO3, где R - трехвалентный ион иттрия или редкой земли. Ортоферриты кристаллизуются в структуре типа перовскита (рис.34) и имеют ромбическую элементарную ячейку. Антиферромагнитное упорядочение магнитных моментов ионов железа у различных ортоферритов происходит ± 50 K . Редкоземельные ионы при 670 слабо подмагничиваются обменным полем co стороны ионов железа и заметное 10 K . упорядочение ИХ магнитных моментов происходит ниже B антиферромагнитном состоянии ионы железа распадаются на четыре магнитных подрешетки и возможная их ориентация показана на рис.73. Для рассмотрения слабого ферромагнетизма можно объединить 1 и 3 подрешетки в первом и 2 и 4 во втором случае. Задача сводится тогда к 2-х подрешеточному антиферромагнетику с направлениями спонтанной намгниченности вдоль оси a(x) в первом случае и вдоль оси c(z) во втором случае. Угол скоса магнитных подрешеток составляет примерно 0,5°. У некоторых ортоферритов разным областям температуры соответствуют разные направления магнитных подрешеток, т.е. происходят так называемые спинориентационные фазовые переходы. Ситуация еще более осложняется при

133

упорядочении магнитных моментов редкоземельных ионов. Могут возникать точки

Рис.73. Элементарная ячейка и магнитная структура ортоферритов 1 - 4 - магнитные подрешетки, I и II - возможные ориентации магнитных моментов в подрешетках.

компенсации слабых ферромагнитных моментов, т.е. обращение в ноль при некоторой температуре.

§ 4.4. Пьезомагнитный и магнитоэлектрический эффекты

Пьезомагнитным эффектом называется линейное изменение (в том числе и возникновение) намагниченности под действием внешних механических напряжений. Для того, чтобы этот эффект был необходимо присутствие в разложении термодинамического потенциала членов вида

$$-\Lambda_{ijk}\sigma_{ij}H_k$$
,

(4.32)

которые должны быть инвариантны относительно операций симметрии магнитной группы кристалла. Из (4.32) следует, что

$$M_k = -\frac{\partial \Phi}{\partial H_k} = \Lambda_{ijk} \sigma_{ij},$$

(4.33)

т.е. линейная связь между намагниченностью и механическими напряжениями. Пьзомагнитному эффекту соответствует сопряженный или взаимный эффект линейной магнитострикции

$$u_{ij} = -\frac{\partial \Phi}{\partial \sigma_{ij}} = \Lambda_{ijk} H_k.$$

(4.34)

Если в кристалле нет магнитного упорядочения, то поскольку операция инверсии времени l'(R) входит в число элементов симметрии пространственной группы кристалла, членов вида (4.32) не должно быть и пьезомагнитный эффект отсутствует. Это прямо следует из принципа Кюри-Неймана, согласно которому если кристалл обладает некоторым физическим свойством, то группа симметрии кристалла должна быть группой или подгруппой симметрии этого свойства, т.е. кристалл обладает некоторым свойством, если это свойство остается инвариантным при всех операциях симметрии кристалла. У кристаллов, обладающих магнитным упорядочением, операция l' входит только в комбинациях с другими элементами симметрии и у таких кристаллов пьезомагнитный эффект возможен.

У ферромагнетиков И слабых ферромагнетиков элементы магнитной симметрии оставляют неизменным аксиальный вектор намагниченности И. Н. Поэтому следовательно, параллельную ему компоненту В разложении термодинамического потенциала будут члены типа (4.32), у которых компонента Н, параллельная спонтанной намагниченности умножается на инвариантные относительно группы магнитной симметрии компоненты тензора σ_{ii} . В частности, $\Sigma \sigma_{ii}$ - инвариант и поэтому всегда будут слагаемые для любого кристалла вида $H_{\alpha}\sigma_{ii}$, где H_{α} - компонента H вдоль M_S . Таким образом всестороннее сжатие приводит к линейному изменению спонтанной намагниченности. Пьезомагнитный эффект не велик, поэтому при наличии большой спонтанной намагниченности заметить ее малое изменение трудно. Но, если кристалл антиферромагнетик, то пьезомагнитный эффект приводит к появлению намагниченности при этом в внешнего отсутствии поля , что делает экспериментально возможным его обнаружение. С симметрийной точки зрения, можно сказать, что в этом случае запрещенный в свободном состоянии кристалла слабый ферромагнетизм появляется в следствии таких искажений кристаллической решетки под действием механических напряжений, которые приводят к понижению симметрии и разрешению появления намагниченности в отсутствии внешнего поля. Естественно, пьезомагнитный эффект имеет место только у тех антиферромагнетиков, у которых члены типа (4.32) инвариантами. Действительно, такие кристаллы имеются. Впервые являются пьезомагнитный эффект как прямой так и сопряженный был обнаружен кристаллах CoF₂ и MnF₂ A.C.Боровиком-Романовым [44], по величине $\Lambda \sim 10^{-3} \, \Gamma c \cdot c m^2 / \kappa \Gamma$.

Магнитоэлектрический эффект связан с наличием в разложении термодинамического потенциала членов вида

$$-\alpha_{ik}H_iE_k$$
.

(4.35)

Отсюда следует, что

$$M_i = \alpha_{ij} E_k$$
 и

(4.36)

 $P_k = \alpha_{ik} H_i$.

Таким образом под действием электрического поля появляется пропорциональная ему намагниченность, а под действием магнитного поля электрическая поляризация. Из вида члена (4.35) следует, что этим эффектом не могут обладать кристаллы, в группу симметрии которых входит отдельно операция 1' и пространственная инверсия, так как при этих операциях соответственно H_i и E_k неизменным . меняют знаки , а тензор α_{*ik*} остается Таким образом магнитоэлектрический эффект может иметь место только при наличии магнитного упорядочения . Экспериментально эффект наблюдался на кристаллах Cr₂O₃ , у которых α ~ 10⁻⁵ [45].

ГЛАВА 5

Доменная структура и процессы намагничивания

§ 5.1. Причины распадения на домены и методы наблюдения доменов

Рассмотрим кристалл одноосного однородно намагниченного ферромагнетика (Рис.74а). На тех поверхностях образца , на которых намагниченность имеет нормальную к ним составляющую (M_n) , намагниченность претерпевает скачек , что эквивалентно нахождению на поверхностях магнитных зарядов

Рис.74. Схематическое изображение образца одноосного ферромагнетика с различной доменной структурой.

Эти магнитные заряды создают поле рассеяния , которое внутри образца называется размагничивающим полем (H_d). Взаимодействию размагничивающего поля с

намагниченностью соответствует магнитостатическая энергия $-\frac{1}{2}\int_{V} \mathbf{M}\mathbf{H}_{d} dv$, где v объем

кристалла. Эта энергия положительная. Таким образом возникновение однородной намагниченности приводит к увеличению энергии кристалла. Если образец распадется на две области с противоположными направлениями намагниченности (рис.74б), так называемые 180-е домены, то благодаря тому, что размагничивающие поля от магнитных зарядов на поверхностях соседних доменов частично компенсируют друг друга, магнитостатическая энергия уменьшится почти в два раза. Если процесс распадения на домены продолжится, то магнитостатическая энергия будет уменьшаться. Но такой процесс может происходить только до определенного предела. Дело в том, что между соседними доменами находится переходная область, которая называется доменной границей или доменной стенкой. Доменные границы обладают определенной энергией, так как единица объема границы имеет энергию большую чем единица объема домена (подробнее это будет рассмотрено в следующем параграфе). Поэтому по мере увеличения числа доменов магнитостатическая энергия будет уменьшаться, но будет расти суммарная площадь доменных границ и, следовательно , их общая энергия. Процесс распадения на домены остановится при минимуме суммарной энергии - магнитостатической плюс энергии доменных границ. Если энергия одноосной анизотропии невелика, то может образоваться доменная

структура с замкнутым магнитным потоком, предсказанная Ландау и Лифшицем (рис.74в и г). В этом случае магнитные заряды на поверхности и на границах отсутствуют, но появляется дополнительная энергия анизотропии из-за образования призматических 90⁰-ых доменов, в которых намагниченность направлена вдоль трудного направления. Эта энергия наряду с энергией доменных границ и будет определять наиболее выгодный размер доменов. Только 180⁰-ые домены и, возможно, структуры Ландау и Лифшица образуются у одноосных ферромагнетиков, т.е. в том случае, если ось легчайшего намагничивания является единичной (оси 3, 4 и 6 порядка). Если ферромагнетик многоосный, то помимо 180⁰-ых доменов могут быть и другие.

Антиферромагнетики не обладают спонтанной намагниченностью и поэтому магнитостатической энергии нет, но не смотря на это они также могут распадаться на домены. Возникновение антиферромагнитных доменов, по-видимому, связано с тем, что в разных частях реального кристалла есть энергетическое предпочтение к тому или иному направлению намагниченностей магнитных подрешеток, хотя с кристаллографической точки зрения эти направления и идентичны . При существенной магнитострикции определенную роль может сыграть и уменьшение при распадении на домены упругой энергии. Рассмотрим случай NiO, который имеет структуру NaCl и в парамагнитной области кубический (T_H=525 K). Магнитная структура аналогична структуре MnO (рис.37). Магнитные моменты ионов никеля направлены по одному из направлений [110] и образуют слои, параллельные плоскостям (111). В каждом слое магнитные моменты параллельны, а соседних слоях антипараллельны. Благодаря магнитострикции при магнитном упорядочении происходит сжатие в направлении перпендикулярном ферромагнитным слоям, т.е. по [111]. Структура при этом по рентгеновским данным становится ромбоэдрической. При такой кристаллической и магнитной структурах возможно образование доменов двух типов : 1) имеющие плоскости, в которых лежат магнитные моменты, одинаковой ориентации, но отличающиеся направлениями в этих плоскостях магнитных моментов на $\pi/3$, $2\pi/3$ и π ; 2) плоскости, в которых лежат магнитные моменты, разные при этом энергетически наиболее выгодными являются такие соседние домены, в которых направления атиферромагнитной оси совпадают. Примеры границ между последними доменами приведены на рис.75.

Рис. 75. Примеры антиферромагнитных доменов в NiO, являющихся двойниками [46].

С

кристаллографической точки зрения такие домены являются двойниками и у них по разному ориентированы оси оптической индикатрисы. Что касается доменных стенок , то в первом случае стенки должны быть толстые и мало чем отличаться от доменных стенок в ферромагнетике. Во втором случае, поскольку направления магнитных моментов в соседних доменах совпадают, отсутствует энергия неоднородного обмена и энергия магнитной анизотропии, поэтому стенки должны иметь нулевую толщину.

То, что ферромагнетик распадается на домены впервые предположил Вейсс (1907г.), а первое экспериментальное доказательство их существования было получено Баркгаузеном (1919 г.), который помещал ферромагнетик в соленоид и намагничивал его. Напряжение на соленоиде подавалось на наушники. Во время намагничивания слышались щелчки, которые, как предполагалось, соответствовали скачкам доменных границ (скачки Баркгаузена).

Непосредственное наблюдение доменных границ стало возможным только в начале 30-х годов, когда был развит метод порошковых фигур (метод Акулова-Биттера). В этом методе на поверхность ферромагнитного кристалла наносится тонкий слой суспензии, состоящей из мелких частиц магнитного материала. Эти частицы стремятся занять на поверхности положения с наименьшей энергией, поэтому они концентрируются вдоль доменных границ, где напряженность полей рассеяния наибольшая. В 30-х и 40-х годах этот метод широко использовался, но в дальнейшем был вытеснен магнитооптическими методами, которые экспериментально проще и более информативны

Рис. 76. Геометрия различных магнитооптических эффектов.

- а) Эффект Фарадея
- б) Эффект Фохта.
- в) Полярный эффект Керра.
- г) Меридиональный эффект Керра.
- д) Экваториальный эффект Керра.

При взаимодействии света со средой, обладающей намагниченностью, имеет место целый ряд магнитооптических эффектов. При прохождении света через среду с намагниченностью параллельной волновому вектору (рис.76а) собственными волнами являются волны с правой и левой круговой поляризацией, имеющие разные фазовые скорости (круговое двупреломление), что приводит к повороту

плоскости поляризации линейно поляризованного света (эффект Фарадея). Эффект Фарадея линеен по величине намагниченности и направление поворота плоскости поляризации меняется на обратное при изменении направления намагниченности на противоположное, но не меняется при изменении направления распространения света. Для диа- и парамагнетиков эффект Фарадея невелик - порядка минут и градусов на сантиметр в полях в несколько килоэрстед. У кристаллов со спонтанной намагниченностью он может достигать ~ 10⁶град/см⁻¹.

Если в образце, через который проходит свет, намагниченность направлена перпендикулярно направлению распространения (рис. 76б), то для электрического вектора световой волны выделенными оказываются два направления - параллельное и перпендикулярное намагниченности, что приводит к линейному двупреломлению (эффект Фохта или Коттона-Мутона). Линейно поляризованный свет становится эллиптически поляризованным. Эффект пропорционален квадрату намагниченности и не зависит от ее направления.

Следующие магнитооптические эффекты относятся к отраженному свету и называются эффектами Керра. Различают три случая эффекта Керра :

- Полярный эффект Керра намагниченность перпендикулярна отражающей поверхности (рис. 76в);
- Меридиональный эффект Керра намагниченность параллельна отражающей поверхности и плоскости падения света (рис. 76г);
- 3) Экваториальный эффект Керра намагниченность параллельна отражающей поверхности и перпендикулярна плоскости падения света (рис. 76д).

При полярном и меридиональном эффектах Керра, которые образуют группу продольных магнитооптических эффектов, отражение линейно поляризованного света сопровождается поворотом плоскости поляризации и появлением эллиптичности у отраженного луча. Экваториальный эффект Керра заключается в зависимости интенсивности и сдвига фазы отраженного света от направления намагниченности из-за взаимодействия с ней компоненты электрического вектора, лежащей в плоскости падения, т.е. перпендикулярной намагниченности. Все эффекты Керра линейны по намагниченности.

Если кристалл прозрачен в видимом свете хотя бы при толщине в несколько микрон, то для наблюдения 180⁰-ных доменов с намагниченностью перпендикулярной поверхности образца используется эффект Фарадея. Схема установки для этого случая приведена на рис. 77а. Плоскость поляризации линейно поляризованного света после прохождения через домены с противоположно направленной намагниченностью поворачивается в разные стороны. Для получения контрастного изображения анализатор устанавливается в таком положении, чтобы свет, прошедший через один из доменов, гасился.

Если кристалл непрозрачен, то для наблюдения 180⁰-х доменов с намагниченностью, перпендикулярной поверхности, может быть использован полярный эффект Керра. Для наблюдения доменов с намагниченностью, лежащей в плоскости образца, используется меридиональный эффект Керра. Вариант установки для этих случаев приведен на рис. 776. В обоих случаях для получения контраста используется эффект поворота в разные стороны плоскости поляризации света, отраженного от доменов с противоположными направлениями намагниченности.

Магнитные домены в тонких пленках толщиной 20 ÷ 250 нм можно наблюдать с помощью просвечивающей электронной микроскопии. На электроны, проходящие через магнитную пленку, действует сила Лоренца, зависящая от направления намагниченности, что позволяет получить изображение доменной структуры. Для наблюдения доменов на поверхности образца используется растровая электронная микроскопия. Электронный луч, падающий на поверхность образца, проникает в

Рис. 77. Схема оптического наблюдения 180°-ых доменов в проходящем (а) и (б) отраженном свете. П - поляризаторы, А - анализаторы, С - полупрозрачная пластинка.

направления намагниченности. Поэтому интенсивность вторичных электронов, регистрируемых детектором, зависит от направления намагниченности в том месте, куда падает пучок первичных электронов. Это позволяет при сканировании электронного луча по поверхности образца получать изображение доменной структуры.

Еще большую информацию о доменной структуре на поверхности ферромагнетика позволяет получить растровая электронная микроскопия на поляризованных электронах. Первичный неполяризованный пучок электронов, падая на поверхность образца возбуждает вторичные электроны со спиновой поляризацией, т.е. с определенной ориентацией спинов. При этом вектор поляризации ориентирован антипараллельно намагниченности на той части поверхности, на которую падает первичный пучок. Определение направления поляризации вторичных электронов при сканировании первичного пучка по поверхности образца дает возможность определять распределение намагниченности. Важно, что в этом случае удается регистрировать не просто различие в направлениях намагниченности, а определять сами направления.

Доменные границы и даже особенности в их структуре могут наблюдаться с помощью так называемой магнитной силовой микроскопии. Пробник в виде тонкой иглы из ферромагнитного материала или из немагнитного, но покрытой ферромагнитной пленкой, крепится на упругой консоли. Острие иглы сканируется по поверхности образца, его не касаясь. В местах градиента намагниченности у поверхности, а, следовательно, изменения полей рассеяния происходит и изменение взаимодействия пробника с поверхностью образца, что приводит к изменению изгиба консоли, который может регистрироваться одним из возможных способов : по

отклонению луча света, падающего на консоль, емкостным датчиком, биморфным пьезодатчиком, лазерным интерферометром, туннельным микроскопом. Со сканируемого по поверхности образца пробника сигнал подается на дисплей и при соответствующей развертке получается карта поверхности образца.

В заключение отметим, что распадение на домены оказывается энергетически невыгодным, если размер частицы ферромагнетика порядка ширины доменной стенки. В этом случае частица остается однодоменной, что было подтверждено экспериментально на частицах гексаферрита бария размером меньше ~ 0,1 мкм. При дальнейшем уменьшении размера частиц силы магнитной анизотропии не в состоянии удержать магнитный момент по легкой оси и поэтому направление намагниченности флуктуирует в пространстве. Совокупность таких частиц в магнитном поле ведет себя как парамагнетик. Так как частицы по сравнению с атомами обладают огромным магнитным моментом, то насыщение наблюдается уже в достижимых полях. Проявление мелкими частицами магнитных свойств, аналогичных парамагнетикам, называется суперпарамагнетизмом.

§ 5.2. Энергия и структура статических доменных границ

Основы теории доменных границ были заложены Ландау и Лифшицем (1935 г.), которые первые теоретически получили правильную магнитную структуру стенки. Ниже мы рассмотрим 180⁰-ую доменную границу, т.е. границу между доменами, угол между намагниченностями которых составляет 180⁰. В самой границе происходит изменение направления магнитных моментов атомов при этом оно не должно быть резким, иначе имел бы место сильный рост обменной энергии, так как угол между магнитными моментами соседних атомов существенно отличался бы от 180⁰, при котором обменная энергия минимальна. Поэтому поворот магнитных моментов должен происходить постепенно. Это дает возможность рассматривать доменные границы в рамках так называемой микромагнитной теории. Считается, что материал представляет из себя непрерывную среду со спонтанной намагниченностью, направление которой является функцией координаты, но величина при этом остается неизменной.

Так как ориентация магнитных моментов атомов в стенке меняется постепенно, то плотность обменной энергии стенки, возникающей из-за неоднородного состояния намагниченности, можно разложить в ряд по степеням градиентов компонент **M** при этом войдут только четные члены относительно градиентов, так как изменение направления **M** на обратное не должно изменить энергию. Тогда, ограничиваясь квадратичными членами относительно градиентов компонент намагниченности , для плотности энергии неоднородного обмена *w*_e получим

$$w_e = \frac{1}{2} \alpha_{ijkl} \frac{\partial M_i}{\partial x_k} \cdot \frac{\partial M_j}{\partial x_l}, \qquad (5.1)$$

где α_{ijkl} тензор 4-го ранга, вид которого определяется симметрией кристалла. Так как обменная энергия не зависит от того, как направлена намагниченность относительно кристаллографических осей, то зависимость w_e от градиентов вектора M_S должна быть изотропная. Поэтому градиенты должны входить в разложение w_e одинаковым образом и индексы *i* и *j* должны совпадать. Таким образом тензор α_{ijkl} имеет вид $\alpha_{kl}\delta_{ij}$. У кубического кристалла все три оси эквивалентны, поэтому тензор α_{kl} становится скаляром и для w_e имеем

$$w_e = \frac{1}{2} \alpha \frac{\partial M_i}{\partial x_k} \cdot \frac{\partial M_i}{\partial x_l} = \frac{1}{2} \alpha \left[(\nabla M_x)^2 + (\nabla M_y)^2 + (\nabla M_z)^2 \right]$$
(5.2)

Удобнее ввести относительную намагниченность m = M / M, тогда (5.2) примет вид

$$w_e = A \left[\left(\nabla m_x \right)^2 + \left(\nabla m_y \right)^2 + \left(\nabla m_z \right)^2 \right], \tag{5.3}$$

где $A = \frac{1}{2} \alpha M^2$ и называется константой неоднородного обмена. По порядку величины $A \approx \frac{J\langle S \rangle^2}{a}$, где *a* - постоянная решетки, $a \langle S \rangle$ - имеет смысл среднего значения спина подрешетки. Величина А зависит от температуры, обращаясь в ноль в точке Кюри. Для Y₃Fe₅O₁₂ при комнатной температуре $A = 4,15 \cdot 10^{-7}$ эрг·см⁻¹. В случае одноосного кристалла только две оси эквивалентны и если ось *z* совпадает с выделенной, то

$$w_e = A_1 \left[\left(\nabla m_x \right)^2 + \left(\nabla m_y \right)^2 \right] + A_2 \left(\nabla m_z \right)^2.$$
(5.4)

Удобнее перейти к полярным координатам (рис.78),

Рис. 78. Полярные координаты.

где

$$m_{x} = \sin\theta\cos\varphi,$$

$$m_{y} = \sin\theta\sin\varphi,$$
 (5.5)

$$m_{z} = \cos\theta.$$

Тогда для кубического кристалла, используя формулу (5.3), получим

$$w_e = A \Big[(\nabla \theta)^2 + \sin^2 \theta (\nabla \varphi)^2 \Big].$$
(5.6)

Магнитные моменты атомов в стенке направлены не по оси легчайшего намагничивания, поэтому появляется энергия магнитной анизотропии, для плотности которой w_a , если легкая ось совпадает с осью z, согласно (4.2) имеем

$$w_a = k \sin^2 \theta. \tag{5.7}$$
Далее будем считать, что хотя рассматривается одноосный кристалл, но различие в величинах A_1 и A_2 в (5.4) невелико и для плотности энергии неоднородного обмена можно использовать формулу (5.6) для кубического кристалла. Тогда для суммарной плотности энергии w имеем

$$w = w_e + w_a = A \Big[(\nabla \theta)^2 + \sin^2 \theta (\nabla \phi)^2 \Big] + k \sin^2 \theta.$$
 (5.8)

Стенки Блоха

Теперь пусть мы имеем дело с бесконечным образцом, состоящим из двух доменов с противоположными направлениями намагниченности. Более или менее очевидно, что энергетически наиболее выгодно, чтобы стенка была плоской, параллельной намагниченностям в доменах и при переходе от одного домена к другому намагниченность вращалась в плоскости доменной стенки. В этом случае отсутствует нормальная к стенке компонента намагниченности и поэтому вокруг стенки нет полей рассеяния и, следовательно, отсутствует магнитостатическая энергия, связанная с этими полями. Таким образом плотность энергии, обусловленной вращением спинов, состоит только из энергии неоднородного обмена и энергии анизотропии, т.е. дается формулой (5.8).

Условием статически равновесного распределения намагниченности в стенке является равенство нулю для каждого спина вращающих моментов, обусловленных обменным взаимодействием и магнитной анизотропией, что математически эквивалентно постоянству интеграла $W = \int_{V} w dv$ относительно вариации углов θ и ϕ , являющихся функциями координат. Таким образом чтобы найти статическое распределение

намагниченности, надо решить вариационное уравнение для энергии стенки $\delta w = 0$, которое сводится к уравнениям Эйлера, т.е. равенству нулю функциональных

производных

$$\frac{\delta w}{\delta \theta} = \frac{\delta w}{\delta \varphi} = 0, \tag{5.9}$$

где

$$\frac{\delta w}{\delta \theta} = \frac{\partial w}{\partial \theta} - \nabla \frac{\partial w}{\partial (\nabla \theta)},$$

$$\frac{\delta w}{\delta \varphi} = \frac{\partial w}{\partial \varphi} - \nabla \frac{\partial w}{\partial (\Delta \varphi)}.$$
(5.10)

Можно отметить аналогию между вариационным принципом микромагнетизма и вариационным принципом механики точки. Если считать, что w_e кинетическая энергия, а w_a - потенциальная, то получим принцип Гамильтона. Пусть центр рассматриваемой нами доменной стенки совпадает с плоскостью xz (рис.77), тогда полупространство y < 0 совпадает с одним доменом, а полупространство с y > 0 с другим. При такой ориентации осей изменение направления намагниченности происходит только вдоль оси y (так называемая одномерная стенка) и граничные

условия следующие : а) $\theta(-\infty) = 0$ и $\theta(+\infty) = \pi$ или б) $\theta(-\infty) = \pi$ и $\theta(+\infty) = 0$. Формула для плотности энергии стенки (5.8) примет вид :

$$w = A \left(\frac{\partial \theta}{\partial y}\right)^2 + k \sin^2 \theta.$$
 (5.11)

Подставляя теперь (5.11) в первое из уравнений (5.10), получим

$$\frac{\partial^2 \theta}{\partial y^2} - \Delta^{-2} \sin \theta \cos \theta = 0, \qquad (5,12)$$

где $\Delta = \sqrt{\frac{A}{k}}$ - так называемый параметр ширины стенки. Первый интеграл уравнения (5.12) имеет вид

$$\frac{\partial \theta}{\partial y} = \pm \frac{1}{\Delta} \sin \theta. \tag{5.13}$$

Знак (+) соответствует граничным условиям (а), а знак (-) граничным условиям (б). Интегрированием (5.13) получим закон распределения намагниченности в стенке

$$\theta(y) = 2 \operatorname{arctg} \exp\left(\pm \frac{y}{\Delta}\right).$$
 (5.14)

Рис. 79. Изменение угла в области 180°-ой стенки Блоха.

Отметим, что полученное решение для обеих граничных условий справедливы как для $\phi = 0$, так и для $\phi = \pi$. Таким образом поворот намагниченности в стенке вокруг оси *у* может быть как правым, так и левым. Схематически структура такой 180-градусной доменной стенки приведена на рис.80а. Доменная стенка с такой структурой называется стенкой Блоха.

Используя выражение (5.11) для плотности энергии стенки и формулу (5.13), можно получить энергию стенки σ_B в расчете на единицу поверхности стенки

$$\sigma_B = \int_0^{\pi} w d\theta = 4\sqrt{Ak}.$$
 (5.15)

Величины Δ и σ_B для 180 - градусных доменных стенок для некоторых материалов приведены в табл.5.1.

Таблица 5.1

Энергия и ширина доменных 180-градусных доменных стенок для некоторых ферро - и ферримагнетиков

Материал	А, 10 ⁻⁷ эрг.см	k ₁ , эрг·см ³	Δ. 10 ⁻⁸ см	$\sigma_{\rm B}$, эрг-см ²
Fe	20,0	$4,6.10^5$	208	0,96
Со	10,3	$4,1.10^{6}$	50	2,1
$Y_3Fe_5O_{12}$	4,15	$-6,2\cdot10^{3}$	820	0,20

Рис.80. Схематическое изображение 180^{0} -ых стенок Блоха (а) и Нееля (б)

Стенка Нееля

Реальные образцы ферромагнетиков ограничены в пространстве и это приводит к возникновению вокруг 180- градусной доменной стенки полей рассеяния. Благодаря этому структура стенки становится не чисто блоховской или вообще не блоховской. Рассмотрим сначала какая дополнительная энергия возникает, если намагниченность выходит из плоскости доменной стенки, т.е. будет отлична от нуля нормальная к стенке составляющая намагниченности M_n , что приведет к появлению соответствующего размагничивающего поля H_d . Так как другие внешние поля отсутствуют, то $div\mathbf{B} = 0$, где $\mathbf{B} = \mathbf{H}_d + 4\pi\mathbf{M}$. Отсюда

$$div \left(\mathbf{H}_{d} + 4\pi \mathbf{M} \right) = 0. \tag{5.16}$$

Так как в нашем случае задача одномерная, то (5.16) сводится к

$$\frac{dH_d}{dy} = -4\pi \frac{dM_n}{dy},\tag{5.17}$$

с граничными условиями $M_n \to 0$ и $H_d \to 0$ при $|y| \to \infty$. Интегрируя (5.17) при этих граничных условиях, получим

$$H_d = -4\pi M_n. \tag{5.18}$$

Отсюда для плотности энергии размагничивающего поля w_d получим

$$w_{d} = \frac{H_{d}^{2}}{8\pi} = 2\pi M_{n}^{2} = 2\pi M^{2} \sin^{2} \theta \sin^{2} \phi.$$
 (5.19)

Итак, при выходе намагниченности из плоскости стенки плотность энергии состоит из трех членов

$$w = w_e + w_a + w_d = A \left[\left(\frac{\partial \theta}{\partial y} \right)^2 + \sin^2 \theta \left(\frac{\partial \varphi}{\partial y} \right)^2 \right] + k \sin^2 \theta + 2\pi M^2 \sin^2 \theta \sin^2 \varphi.$$
(5.20)

Решение задачи о структуре стенки для угла θ дает такую же функциональную зависимость от *у* как (5.14) при φ = const. Для плотности энергии стенки σ_w имеем

$$\sigma_{w} = \int_{-\infty}^{+\infty} w dy = \int_{-\infty}^{+\infty} w \left(\frac{\partial \theta}{\partial y}\right)^{-1} dy = \int_{-\infty}^{+\infty} \left[A \left(\frac{\partial \theta}{\partial y}\right)^{2} + k \sin^{2} \theta + 2\pi M^{2} \sin^{2} \theta \sin^{2} \phi \right] dy. \quad (5.21)$$

Используя равенство (5.13), окончательно получим

$$\sigma_w = 2A\Delta^{-1} + 2k\Delta + 4\pi M^2 \Delta \sin^2 \varphi.$$
(5.22)

Минимизируя (5.22) по Δ , для Δ_{min} получим

$$\Delta_{\min} = \sqrt{\frac{A}{k + 2\pi M^2 \sin^2 \varphi}}$$
(5.23)

и для соответствующей плотности энергии стенки имеем

$$\sigma_w = 4\sqrt{A(k + 2\pi M^2 \sin^2 \varphi)}.$$
(5.24)

В случае k >> $2\pi M^2$, раскладывая в ряд (5.23) и (5.24), легко получить более простые формулы

$$\Delta_{\min} \cong \Delta \left(1 - \frac{1}{2} \cdot \frac{2\pi M^2}{k} \sin^2 \varphi \right), \tag{5.25a}$$

$$\sigma_w = \sigma_B + 4\pi M^2 \Delta \sin^2 \varphi. \tag{5.256}$$

Таким образом появление нормальной к стенке компоненты намагниченности увеличивает энергию стенки и делает стенку тоньше.

Несмотря на появление энергии размагничивающего поля при определенной геометрии образца может оказаться энергетически выгодной такая структура 180⁰-ой стенки, при которой намагниченность вращается в плоскости, перпендикулярной к стенке (рис.80б); при этом $\varphi = \pm \pi/2$ и знак зависит от направления вращения. Доменные стенки с такой магнитной структурой называются стенками Нееля. Учет энергии размагничивающего поля приводит к следующим формулам для параметра ширины (Δ_N) и плотности энергии (σ_N) стенки Нееля

$$\Delta_N = \sqrt{\frac{A}{k + 2\pi M^2}},\tag{5.26}$$

$$\sigma_N = 4\sqrt{A(k+2\pi M^2)}.$$
(5.27)

Видно, что магнитостатическая энергия является некой добавкой к энергии анизотропии и стремится сделать стенку более тонкой.

Стенки Нееля оказываются энергетически выгоднее стенок Блоха в случае очень тонких пленок с намагниченностью, лежащей в плоскости пленки. Чтобы убедиться в этом для учета энергии размагничивающих полей аппроксимируем стенки Блоха и Нееля цилиндрическими поверхностями эллиптического сечения (рис.81) и пусть d - ширина стенки, а h - толщина пленки. При такой аппроксимации стенок для плотности магнитостатической энергии стенки w_d имеем

$$w_d = \frac{1}{2} N M_{\rho\phi\phi}^2, \qquad (5.28)$$

здесь N - размагничивающий фактор и $M_{3\phi\phi}$ - эффективная намагниченность. Размагничивающий фактор для цилиндрических поверхностей эллиптического сечения дается простой формулой и в случае стенки Блоха $N_B = \frac{4\pi d}{d+h}$, в случае стенки Нееля $N_N = \frac{4\pi h}{d+h}$. В том и в другом случае величины $M_{3\phi\phi}$ можно считать одинаковыми и равными средней проекции **M**_S на главную ось эллипсоида,

Рис. 81. Схематическое изображение блоховской (а) и неелевской (б) доменных стенок, аппроксимированных цилиндрами эллиптического сечения.

т.е. $M_{9\phi\phi} \cong \frac{M_s}{\sqrt{2}}$. Если рассматривать поверхностную плотность магнитостатической энергии σ_M , то в обоих случаях можно считать, что $\sigma_M \cong \frac{1}{2} w_d d$. Таким образом для магнитостатической энергии в расчете на единицу площади поверхности стенки Блоха (σ_M^{B}) и стенки Нееля (σ_M^{B}) имеем

$$\sigma_M^B = \frac{1}{2} \cdot \frac{\pi d^2}{d+h} M_S^2, \qquad (5.29)$$

$$\sigma_M^N = \frac{1}{2} \cdot \frac{\pi dh}{d+h} M_S^2.$$
 (5.30)

Можно считать, что вклады в суммарную поверхностную плотность энергии энергий неоднородного обмена и магнитной анизотропии в обоих случаях примерно одинаковые. Поэтому выгодность той или иной структуры стенки определяется соотношением величин σ^{B}_{M} и σ_{M}^{N} . Из сравнения (5.29) и (5.30), видно, что при h > d выгоднее стенка Блоха, а при h < d стенка Нееля. Таким образом благодаря выигрышу в магнитостатической энергии стенка Нееля оказывается выгоднее в пленках, толщина которых меньше ширины доменной стенки. Для пленок железа и пермаллоя стенки Нееля можно ожидать при толщинах порядка 10^{3} Å. В области толщин пленок, соответствующих переходу от блоховской структуры к неелевской, энергетически выгоднее образование так называемых стенок с поперечными связями (типов «цепочки» или «колючей проволоки»). Схематически такие структуры показаны на рис.82.

Рис.82. Доменные границы типа «цепочки» (а) и «колючей проволоки» (б).

Скрученная спиновая структура 180⁰ доменной стенки

Из-за ограниченности образца благодаря граничным условиям структура доменной стенки усложняется. Магнитные заряды на поверхностях выхода намагниченностей доменов создают поля рассеяния, которые имеют составляющую нормальную к доменной стенке. Случай 180⁰-ой стенки с намагниченностью перпендикулярной поверхности, изображен на рис.83, где пунктиром показано направление силовых линий полей рассеяния.

Рис.83. Схематическое изображение полей рассеяния и направлений намагниченности в середине скрученной 180°-ой доменной стенки Блоха при двух возможных направлениях вращения намагниченности (*a*) и (*б*) в стенке по углу θ.

На стенке эти поля перпендикулярны ее поверхности и, если стенка одиночная, то

$$H_{y}(y) = 4M_{s}\ln\frac{z}{h-z},$$
 (5.31)

в системе координат, показанной на рис.83. Формула (5.31) справедлива, когда поле анизотропии много больше размагничивающего поля пластины, что эквивалентно условию $k \gg 2\pi M_s^2$. Из формулы (5.31) следует, что $H_y = 0$ в середине стенки и расходится у поверхностей. Последнее связано с тем, что стенка считалась бесконечно тонкой, поэтому формула не справедлива в поверхностных слоях толщиной порядка ширины стенки.

Поля рассеяния H_y стремятся повернуть намагниченность в стенке к оси *y* при этом в верхней и нижней частях стенки в противоположные стороны. Отсюда возникает скрученная структура стенки. Расчетное изменение угла φ выхода намагниченности в середине стенки из ее плоскости по толщине пластины при учете только полей рассеяния и размагничивания приведено на рис.84.

Рис.84. Изменения угла закручивания φ по толщине пластины или пленки в в скрученной 180°-ой стенке Блоха при Λ<< h. Сплошная линия соответствует случаю (а), а пунктирная случаю (б) на рис.83. Показано также сглаживание зависимостей вблизи поверхностей, связанное с учетом обменного взаимодействия и конечной ширины доменной стенки.

В поверхностных слоях толщиной 0,12h намагниченность направлена перпендикулярно стенке, т.е. в этих слоях стенка имеет неелевскую структуру. При приближении по толщине к середине намагниченность постепенно поворачивается, приближаясь к плоскость стенки. В середине пластины $\varphi = 0$ (рис.84а) или π (рис.84б) в зависимости от того в какую сторону происходит вращение намагниченности в плоскости стенки. Таким образом чисто блоховская стенка имеет место только в середине пластины. Если при расчете угла φ учитывать и обменную энергию, то резких изломов на графике $\varphi(z)$ при переходе от неелевской структуры к скрученной не будет. Кривая сглаживается, как это показано на рис.84 точками. На рис.85 схематически показан поперечный разрез 180^{0} -ой доменной стенки со скрученной магнитной структурой.

Рис.85. Схематическое изображение поперечного разреза скрученной 180°-ой стенки Блоха [48].

.

Линии и точки Блоха

Уже отмечалось, что вращение намагниченности в стенке Блоха с равной вероятностью может происходить как в одну, так и в другую сторону. По разным причинам может оказаться, что в одной и той же стенке есть участки с противоположными направлениями вращения намагниченности. Переходная область на стыке участков с разными направлениями вращения намагниченности называется линией Блоха. В кристаллах с одноосной анизотропией в 180⁰-ых стенках блоховские линии могут быть двух типов - параллельные и перпендикулярные оси легкого намагничивания. Чаще всего исследовалась доменная структура пластинок и пленок с осью легкого намагничивания перпендикулярной поверхностям и объект исследования располагался горизонтально, поэтому линии Блоха, параллельные оси легкого намагничивания стали называться вертикальными, а перпендикулярные этой оси горизонтальными.

Рассмотрим сначала, что из себя представляет вертикальная линия Блоха. Очевидно, что намагниченность в ней вращается сложным образом, поворачиваясь не только вокруг оси y, но и вокруг оси z, т.е. меняется как угол θ , так и угол φ . Намагниченность имеет нормальную к стенке компоненту, при этом для бесконечной линии угол φ зависит только от x, а угол θ по-прежнему только от y. Таким образом для плотности энергии в линии w_{π} имеем

$$w_{\pi} = A \left[\left(\frac{\partial \theta}{\partial y} \right)^2 + \sin^2 \theta \left(\frac{\partial \varphi}{\partial x} \right)^2 \right] + k \sin^2 \theta + 2\pi M_s^2 \sin^2 \theta \sin^2 \varphi.$$
(5.32)

Чтобы найти распределение намагниченности, т.е. функции $\theta(y)$ и $\varphi(x)$ необходимо решить систему уравнений (5.10) с w = w_л при следующих граничных условиях для θ : $\theta(-\infty) = 0, \theta(\infty) = \pi$ или $\theta(-\infty) = \pi, \theta(\infty) = 0$ и для φ : $\varphi(-\infty) = 0, \varphi(\infty) = \pi$ или $\varphi(-\infty) = \pi, \varphi(\infty) = 0$. Первые интегралы такой системы уравнений равны

$$\frac{\partial\theta}{\partial y} = \pm \Delta_0^{-1} \sin\theta, \qquad (5.33)$$

$$\frac{\partial \varphi}{\partial x} = \pm \Lambda_0^{-1} \sin \varphi, \qquad (5.34)$$

где

$$\Delta_0 = \Delta \left(1 + \frac{2\sin^2 \varphi}{Q} \right)^{-\frac{1}{2}}$$
(5.35)

И

$$\Lambda_0 = \sqrt{\frac{A}{2\pi M^2}} \,. \tag{5.36}$$

В (5.35) $Q = \frac{k}{2\pi M^2}$ и называется фактором качества. Решая уравнения (5.33) и (5.34), получим изменения углов θ и ϕ в пространстве :

$$\theta = 2 \operatorname{arctg} \exp\left(\pm \frac{y}{\Delta_0}\right),\tag{5.37}$$

$$\varphi = 2 \operatorname{arctg} \exp\left(\pm \frac{x}{\Lambda_0}\right).$$
 (5.38)

Видно, что наличие блоховской линии не меняет характер зависимости угла θ от y, но ширина стенки уже другая. Она дается формулой (5.35). Зависимость угла φ от x носит тот же характер, что и $\theta(y)$. Λ_0 имеет смысл параметра ширины блоховской линии. Из (5.35) следует, что ширина доменной стенки зависит от координаты x - стенка самая тонкая в середине линии Блоха, где $\varphi = 0$ или $\varphi = \pi$. Чем больше Q, тем меньше сужение. Рассмотрение вертикальной блоховской линии проведено для безграничного образца. Схематически распределение намагниченности в середине стенки при наличии вертикальной линии Блоха приведено на рис.86 a и δ .

Рис. 86. Ориентация магнитных моментов в ортогональных сечениях 180⁰-ой доменной стенке Блоха, содержащей вертикальную (а) и (б) или горизонтальную (в) и (г) линии Блоха. Намагниченность в доменах направлена по оси z.

Энергия, приходящаяся на единицу длины линии Блоха, равна

$$E_{JIE} = 8AQ^{\frac{1}{2}} = 8AM\sqrt{\frac{2\pi}{k}}.$$
 (5.39)

Направление поворота намагниченности в линии Блоха определяется единичным вектором **t**, который равен

 $\mathbf{t} = \frac{\nabla \varphi \times \nabla \theta}{\left| \nabla \varphi \times \nabla \theta \right|}.$ (5.40)

Рис. 87. Схематическое изображение двух соседних вертикальных линий Блоха. Намагниченность в доменах направлена по оси *z*. Стрелками показаны направления магнитных моментов в середине стенки.

В области вертикальной линии Блоха возникают два типа магнитных полюсов. Один связан с y-компонентой намагниченности (см. рис.87) и магнитные заряды на поверхности стенки имеют нечетную симметрию относительно средней плоскости доменной стенки. Такие заряды называются π -зарядами. Второй тип полюсов связан со сходимостью в области линии Блоха x-компоненты намагниченности и приписывается так называемым σ -зарядам. π и в меньшей степени σ заряды являются причиной локальной энергии размагничивания, которая стремится сузить линию Блоха, аналогично тому, как энергия анизотропии стремится сузить стенку Блоха. В обоих случаях обменная энергия стремится расширить переходную область . Равновесная ширина линии Блоха определяется конкуренцией этих двух видов энергии. Одноосная анизотропия не влияет на ширину линии Блоха, так как поворот намагниченности происходит в базисной плоскости. Распределение намагниченности в середине стенки при наличии горизонтальной линии Блоха имеют только π -заряды.

Соседние вертикальные линии Блоха всегда имеют противоположные σ - заряды и поэтому притягиваются друг к другу и стремятся сблизиться. Сближение происходит только до определенного расстояния, так как в противном случае увеличение градиента намагниченности вдоль оси x приведет к быстрому нарастанию энергии неоднородного обмена и, следовательно, сил отталкивания. Такое сближение линий Блоха происходит, если в соседних блоховских линиях спины закручиваются вокруг оси z в одну сторону. Это так называемая закрученная стенка (рис.88*a*). Если спины в соседних блоховских линиях закручиваются в разные стороны (рис.88*б*), то при достаточном сближении линий спины в них могут

Рис. 88. Схематическое изображение магнитной структуры доменной стенки с закрученной (а) и незакрученной (б) парами вертикальных линий Блоха.

достаточно близко, чтобы аннигилировать, зависит от наличия сил, препятствующих их сближению (внешнее поле, дефектов и т.п.).

Сложные магнитные конфигурации в доменных стенках могут требовать возникновения так называемых точек Блоха, которые характеризуются тем, что на сфере бесконечно малого радиуса с центром в точке Блоха имеются все возможные ориентации намагниченности. Примером точки Блоха является магнитная конфигурация в вертикальной линии Блоха на стыке двух ее участков, имеющих противоположные направления поворота намагниченности вокруг оси *z*. Магнитная конфигурация, возникающая в этом случае, приведена на рис.89. В точке Блоха стенка и линия Блоха "стягиваются" до нуля.

Доменные стенки и линии Блоха являются топологическими возбуждениями упорядоченной магнитной системы. Напомним, что вообще топологическим возбуждением упорядоченной среды называется неоднородная конфигурация параметров порядка среды, непереводимая в однородную конфигурацию путем непрерывных деформаций параметров порядка. Любое топологическое возбуждение упорядоченной среды является устойчивым отклонением от идеального состояния. Для вертикальных блоховских линий характерны два топологических инварианта циркуляция и поляризация. Если блоховскую линию окружить контуром (Ц), проходящим только через блоховские участки, как это показано на рис.866, то при движении по этому контору намагниченность совершает поворот на 2π вокруг оси у , оставаясь в плоскости xz. Если поменять направление магнитных моментов в доменах или блоховских участках стенки на обратное, то при обходе по контору Ц намагниченность будет поворачиваться в обратном направлении. В зависимости от направления поворота циркуляции приписывается обозначение +1 или -1. Топологический инвариант - поляризация характеризует поворот намагниченности в блоховской линии. На рис.86б это поворот вокруг оси z. Знак поляризации совпадает со знаком М_v в блоховской линии. В соседних блоховских линиях циркуляция противоположного знака. Что касается поляризации, то она разного знака у закрученных и одного знака у незакрученных пар блоховских линий.

- Рис. 89. а) 180⁹-ая доменная стенка с двумя вертикальными стенками Блоха, одна из которых содержит точку Блоха.
 - которых содержит точку Блоха . в) Ортогональное сечение 180⁰- ой доменной стенки, содержащей вертикальную линию Блоха с точкой Блоха [47] .

§ 5.3. Доменная структура одноосных ферромагнетиков

Рассматривая доменную структуру одноосных ферромагнетиков, будем иметь ввиду образцы в виде пластинок и пленок с поверхностями перпендикулярными оси легкого намагничивания. В таких толстых образцах наряду с так называемыми сквозными доменами, проходящими насквозь через образец, могут быть и несквозные домены, локализованные около поверхностей и похожие на морковку. При малой анизотропии возможно образование замыкающих доменов (рис.746 и г), которые дают выигрыш в магнитостатической энергии, но зато возникает энергия анизотропии и магнитоупругая энергия. По мере уменьшения толщины образца доменная структура у поверхностей упрощается и остаются только сквозные домены. При k << 2πМ2 в пленках толщиной меньше некоторой критической величины намагниченность ложится в плоскость пленки , возникает так называемая полосовая или страйп - структура, в которой домены разделены стенками Нееля или границами типа колючей проволоки. При k >> 2πM2 в пластинках и пленках при отсутствии магнитной анизотропии в базисной плоскости и внешнего магнитного поля, параллельного ей, доменные стенки не плоские, а являются сложными цилиндрическими поверхностями с образующей, параллельной оси легкого намагничивания. Такая доменная структура называется лабиринтной, так как на поверхности она выглядит как сложный лабиринт (рис.90а) .Если в базисной плоскости в силу каких-либо причин есть анизотропия или в этой плоскости приложено магнитное поле, то образуется полосовая доменная структура.

Рис. 90. Доменная структура феррит-гранатовой пленки толщиной 6 мкм с одноосной анизотропией при наблюдении в проходящем свете по схеме рис. 77а. Намагниченности в доменах и магнитное поле перпендикулярны поверхности пленки [59]. 42. a) H = 0; 6) H = 80 Э; e) H = 100 Э; c) H = 115 Э.

Цилиндрические магнитные домены

При k >> 2πM2 рассмотрим условия стабильности изолированного полосового домена шириной w в бесконечной пластине или пленке толщиной h (puc.91).

Рис. 91. Пластинка с одиночным полосовым доменом.

Пусть образец находится в однородном магнитном поле, направленном против направления намагниченности в домене. Разность энергий однородно намагниченного образца и образца с доменом в расчете на единицу длины домена обозначим через $\Delta E_n . \Delta E_n$ является суммой трех членов : 1) энергии двух доменных границ 2 σ wh; 2) энергии намагниченности домена во внешнем магнитном поле или зеемановской энергии 2whM_SH; 3) магнитостатической энергии $E_d = 8\pi M_S^2 hwf(w/h)$, обусловленной взаимодействием намагниченности в домене с размагничивающим полем, создаваемым магнитными зарядами на поверхности образца. Первые две энергии положительные, а третья отрицательная, так как направления намагниченности в домене и размагничивающего поля пластины совпадают. Таким образом имеем

$$\Delta E_n = 2\sigma_w h + 2whM_s H - E_d. \tag{5.41}$$

 E_d - является сложной функцией от M_s , w и h. Пример зависимости ΔE_n и каждого из членов суммы в (5.41) от ширины домена приведены на рис.92.

1 0 116 11

Начиная с некоторой напряженности поля ΔE_n имеет минимум при этом в минимуме $\Delta E_n < 0$, что соответствует стабильному состоянию домена определенной толщины для каждого значения поля. С ростом поля из-за увеличения зеемановской энергии в некотором интервале полей в минимуме $\Delta E_n > 0$, что соответствует метастабильному состоянию домена. Однако домен не может схлопнуться и исчезнуть, так как для этого необходимо преодалеть потенциальный барьер высотой

 $2\sigma wh - \Delta E_{n \min}$. Система находит минимум своей энергии другим путем. Полосовой домен разрывается, образуются вытянутые домены с замкнутой доменной границей. С ростом поля такие домены стягиваются в цилиндрические с круговым поперечным сечением. Процесс образования цилиндрического домена (ЦМД) из полосового

иллюстрирует рис.90. В некотором интервале полей цилиндрический домен (рис.93)

Рис.92. Зависимость разности между энергиями однородно намагниченной пластины и пластины с полосовым доменом от ширины домена при двух значениях напряженности магнитного поля H₂ > H₁ [50].

Рис. 93. Одиночный цилиндрический магнитный домен.

оказывается стабильнее полосового, главным образом благодаря тому, что в него лучше (со всех сторон) проникает размагничивающее поле окружающей его части образца, что способствует увеличению отрицательной части энергии домена.

Рассмотрим теперь условия стабильности цилиндрического домена радиусом r в бесконечной пластине толщиной h в магнитном поле, направленном против намагниченности в домене. Разность энергий однородно намагниченной пластины и пластины с цилиндрическим доменом ΔE_{μ} состоит также, как и в случае полосового домена из трех слагаемых : энергии доменной стенки $2\pi rh\sigma w$, энергии домена во внешнем поле $2\pi r^2 h M_S H$ и магнитостатической энергии E_d . Первые два члена положительные, а третий отрицательный. Таким образом имеем

$$\Delta E_{u} = 2\pi r h \sigma_{w} + 2\pi r^{2} h M_{s} H - E_{d}.$$
(5.42)

Суммарная сила, действующая на стенку домена равна

$$F = -\frac{\partial(\Delta E_{u})}{\partial r} = -2\pi h\sigma_{w} - 4\pi rhM_{s}H + \frac{\partial E_{d}}{\partial r}$$
(5.43)

и для давления на стенку р, которое при равновесном состоянии домена должно быть равно нулю, получим :

$$p = -\frac{\sigma_w}{r} - 2M_s H + \frac{1}{2\pi rh} \cdot \frac{\partial E_d}{\partial r} = 0.$$
(5.44)

Удобнее в уравнении (5.44) нормировать все к полю Н. Тогда при равновесии имеем

$$H + \frac{\sigma_w}{2rM_s} - \frac{1}{4\pi r h M_s} \cdot \frac{\partial E_d}{\partial r} = 0.$$
(5.45)

Обозначим второй и третий члены в (5.45) соответственно H_w и H_d . Уравнения (5.45) решим графически. Зависимости $H+H_w$ и H_d от $\,r\,$ представлены на рис.94 .

Рис.94. Графическое решение уравнения устойчивости цилиндрического магнитного домена [51]

Очевидно, что решением соответствуют точки пересечения этих кривых, т.е. r_a и r_b . Проверим устойчивость этих решений относительно небольших вариаций г путем простых рассуждений. Поле $H + H_w$ стремится сжать домен, а поле H_d наоборот расширить. Решение при радиусе r_a является неустойчивым, так как при небольшом сжатии домена сжимающая сила становится больше расширяющей и домен исчезнет (сколлапсирует). Наоборот при небольшом расширении расширяющая сила становится больше сжимающей и домен станет расширяться. Путем таких рассуждений легко убедиться, что r_b соответствует устойчивому радиусу домена.

С ростом намагничивающего поля кривая для $H + H_w$ будет подниматься и при некотором поле коснется кривой H_d . Это поле называется полем коллапса $H_{\kappa o \pi}$, так как домен становится неустойчивым и исчезает - коллапсирует. Таким образом ЦМД устойчив в некотором интервале подмагничивающего поля $H_{_{2ЛЛ}} < H < H_{\kappa o \pi}$, где $H_{_{2ЛЛ}}$ - поле эллиптической неустойчивости, т.е. поле выше которого домен расширяясь становится уже не круглым в сечении, а эллиптическим. Отношение максимального радиуса домена к минимальному равно приблизительно трем. Таким образом радиус домена может меняться в довольно широких пределах и является функцией параметров материала и толщины пластины или пленки. С ростом намагниченности радиус уменьшается.

Из ЦМД может быть создана плоская гексагональная решетка, которая стабильна в полях меньших поля эллиптической нестабильности одиночного домена и может существовать даже при отсутствии поля подмагничивания. Стабилизирующим фактором, препятствующим расширению доменов и удерживающим их на определенном расстоянии друг от друга, является дополнительная к энергии индивидуального домена положительная добавка, связанная с взаимодействием намагниченности в каждом домене с полями рассеяния окружающих цилиндрических доменов.

§ 5.4. Движение доменной стенки

Важнейшим свойством доменных стенок является возможность их движения при приложении внешнего магнитного поля. Пусть имеются два домена, разделенных 180⁰ - ой стенкой (рис.95а).

Рис. 95. Разные условия движения для одиночной доменной стенки (a) и стенок, разделяющих полосовые домены (б).

В присутствии внешнего магнитного поля, направленного параллельно намагниченности левого домена, энергии доменов в магнитном поле имеют разные знаки и энергетически выгодно левому домену расшириться за счет правого. При смещении стенки на q изменение энергии в расчете на единицу площади стенки составит $\Delta U = -2 M_s H q$, откуда следует, что на стенку действует давление $p_{\rm H}$ равное

$$p_H = -\frac{\partial U}{\partial q} = 2M_S H. \tag{5.46}$$

В случае равновесной в нулевом внешнем поле доменной структуры (рис.95б), под действием поля домены с намагниченностью по полю будут расширяться, а домены с намагниченностью против поля сужаться. При смещении стенок из-за изменения размеров доменов меняется и магнитостатическая энергия поверхностных зарядов, что приводит к появлению действующего на стенки давление р_м, стремящегося вернуть стенки в прежние положения, соответствующие равновесной доменной структуре при нулевом поле. Это давление можно представить как квазиупругую силу, т.е.

$$p_{_{\mathcal{M}}} = -\xi q, \tag{5.47}$$

и оно эквивалентно эффективному полю Н_м равному

$$H_{_{\mathcal{M}}} = -\frac{\xi q}{2M} \tag{5.48}$$

Таким образом в случае 180⁰ – ой доменной структуры действующее поле равно разности H – H_м. Процесс движения стенки сводится к вращению магнитных моментов атомов или

намагниченности. Поэтому сначала рассмотрим взаимодействие намагниченности с магнитным полем.

5.4.1. Уравнение Ландау и Лифшица

В магнитном поле Н на намагниченность действует вращающий момент Т равный

$$\mathbf{T} = \mathbf{M} \times \mathbf{H}.\tag{5.49}$$

Введем гиромагнитное отношение $\gamma = -\frac{M}{J}$, где J - момент количества движения, приведенный, как и M, к единице объема. Поскольку скорость изменения момента количества движения равна вращающему моменту, то

$$\frac{\partial \mathbf{J}}{\partial t} = \mathbf{T}.$$
 (5.50)

Выражая Ј через ү и М, получим

$$\mathbf{T} = -\frac{1}{\gamma} \cdot \frac{\partial \mathbf{M}}{\partial t}.$$
 (5.51)

Теперь, сопоставляя (5.49) с (5.51), можем написать уравнение

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}.$$
 (5.52)

Если умножим левую и правую части (5.52) на **M**, то получим $\frac{\partial \mathbf{M}^2}{\partial t} = 0$, откуда следует, что во время движения намагниченности длина вектора **M** остается постоянной. Из уравнения (5.52) видно, что изменение направления намагниченности происходит таким образом, что скорость изменения **M** перпендикулярна и **M** и **H**. Отсюда следует, что вектор **M** прецессирует вокруг поля **H** (рис.96а).

В доменной стенке состояние намагниченности определяется не только энергией взаимодействия с внешним полем w_3 , но также энергией магнитной анизотропии w_a , энергией неоднородного обмена w_e и магнитостатической энергией w_m , т.е. суммой всех этих энергий

$$w = w_3 + w_a + w_e + w_M . (5.53)$$

Условием равновесия является стационарность энергии w, т.е.

$$\delta \int w(\mathbf{M}) dv = 0. \tag{5.54}$$

Можно считать попрежнему, что $M^2 = \text{const}$, тогда при этом дополнительном условии из вариационного исчисления следует, что (5.54) сводится к

Рис. 96. Прецессия намагниченности без затухания (а) и с затуханием (б).

$$\frac{\delta(w + \lambda M^2)}{\delta \mathbf{M}} = \frac{\delta w}{\delta \mathbf{M}} + 2\lambda \mathbf{M} = 0, \qquad (5.55)$$

где λ - произвольный множитель Лагранжа. Из (5.55) следует, что

$$\mathbf{M} \times \frac{\partial w}{\partial \mathbf{M}} = 0. \tag{5.56}$$

Если ввести эффективное поле $\mathbf{H}_{ef} = -\frac{\delta w}{\delta \mathbf{M}}$, то из равенства (5.56) видно, что условием равновесия является

$$\mathbf{M} \times \mathbf{H}_{ef} = \mathbf{0},\tag{5.57}$$

т.е. М направлено по H_{ef} и последнее действительно можно рассматривать как эффективное поле. Отсюда следует, что при учете рассмотренных взаимодействий в уравнении (5.52) H следует заменить на H_{ef} , т.е.

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{ef} \,. \tag{5.58}$$

Это уравнение не учитывает диссипацию энергии. Для ее учета в правую часть уравнения (5.58) следует ввести дополнительный член, который должен приводить к затуханию прецессии намагниченности (рис.966). Можно этот член представить как некое поле, направленное перпендикулярно \mathbf{M} и \mathbf{H}_{eff} и стремящееся повернуть намагниченность к \mathbf{H}_{eff} , и вместо (5.58) написать следующее уравнение :

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{ef} - \frac{\gamma \lambda}{M^2} \mathbf{M} \times \left(\mathbf{M} \times \mathbf{H}_{ef}\right).$$
(5.59)

Это так называемое уравнение Ландау и Лифшица, в котором λ играет роль феноменологического параметра затухания. Учесть затухание можно несколько иначе и записать, как это было сделано Гильбертом, уравнение Ландау и Лифшица в виде

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{ef} + \frac{\alpha}{M} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t}.$$
(5.60)

Здесь α играет роль параметра затухания и включает в себя все возможные процессы диссипации энергии. В уравнении (5.60) пропорциональность диссипатавного члена скорости изменения **M** записана уже в явном виде. Уравнение (5.59) переходит в (5.60) при замене γ на $\frac{\gamma}{1+\alpha^2}$ и λ на $\frac{\alpha M}{1+\alpha^2}$.

Далее удобнее перейти к сферическим координатам по (5.5). Тогда уравнение (5.60) сведется к следующим двум уравнениям :

$$\frac{\partial\theta}{\partial t} = -\frac{\gamma}{M\sin\theta} \cdot \frac{\delta w}{\delta \varphi} - \alpha \sin\theta \frac{\partial \varphi}{\partial t}, \qquad (5.61)$$

$$\frac{\partial \varphi}{\partial t} = \frac{\gamma}{M \sin \theta} \cdot \frac{\delta w}{\delta \theta} + \frac{\alpha}{\sin \theta} \cdot \frac{\partial \theta}{\partial t}.$$
 (5.62)

Используя (5.61) и (5.62) получим, что

$$\delta w = \frac{\delta w}{\delta \theta} \delta \theta + \frac{\delta w}{\delta \varphi} \delta \varphi = \frac{M}{\gamma} \left[\left(\frac{\partial \varphi}{\partial t} \sin \theta - \alpha \, \frac{\partial \theta}{\partial t} \right) \delta \theta + \left(-\frac{\partial \theta}{\partial t} \sin \theta - \alpha \, \frac{\partial \varphi}{\partial t} \sin^2 \theta \right) \delta \varphi \right]. \tag{5.63}$$

 $\frac{\delta w}{\delta \theta}$ и $\frac{\delta w}{\delta \varphi}$ имеют смысл соответствующих объемных вращающих моментов, приложенных к намагниченности, которые уравновешиваются динамическими силами, возникающими благодаря прецессии и затуханию.

5.4.2. Теоретическое рассмотрение движения одномерной стенки

Вернемся теперь к проблеме движения доменной стенки. В самом общем виде решение задачи достаточно сложное, так как и θ и ϕ меняются по толщине стенки. Но задачу можно упростить, если считать, что изменение угла θ по толщине стенки и сама ее толщина при движении стенки не меняются, т.е.

$$\theta(y,t) = 2 \operatorname{arctg} \exp\left[\frac{y-q(t)}{\Delta}\right],$$
 (5.64)

где q - смещение стенки. Кроме того считаем, что при движении стенки магнитные моменты по всей ее толщине выходят из плоскости стенки на один и тот же угол ϕ . Поэтому можно считать, что намагниченность стенки составляет с ее плоскостью угол ϕ . В общем случае угол ϕ зависит от времени, т.е. $\phi(t)$.

Такие предположения основываются на том, что структура стенки в первую очередь определяется сильным обменным взаимодействием и магнитной анизотропией, а силы магнитостатического происхождения и связанные с действием внешнего поля и динамической реакцией являются только поправками. Используя равенство (5.13), можно написать

$$\delta\theta = -\frac{\partial\theta}{\partial y}dq = -\Delta^{-1}\sin\theta dq, \qquad (5.65)$$

$$\frac{\partial\theta}{\partial t} = -\Delta^{-1} \frac{\partial q}{\partial t} \sin\theta.$$
 (5.66)

Считалось, что q не зависит от y. $\delta\theta$ пропорциональна дифференциалу dq, поскольку q не зависит от y. Из (5.66) видно, что скорость линейного смещения стенки пропорциональна скорости поворота намагниченности.

Чтобы от плотности энергии w перейти к энергии стенки σ_w следует

проинтегрировать (5.63) по y, но мы, используя равенство (5.13), проинтегрируем по θ и для d σ получим

$$d\sigma_{w} = \frac{2M}{\gamma} \left[\left(-\frac{\partial \varphi}{\partial t} - \frac{\alpha}{\Delta} \cdot \frac{\partial q}{\partial t} \right) dq + \left(\frac{\partial q}{\partial t} - \alpha \Delta \frac{\partial \varphi}{\partial t} \right) d\varphi \right],$$
(5.67)

что эквивалентно двум дифференциальным уравнениям

$$\frac{\partial \sigma_{w}}{\partial \varphi} = \frac{2M}{\gamma} \left(\frac{\partial q}{\partial t} - \alpha \Delta \frac{\partial \varphi}{\partial t} \right), \tag{5.68}$$

$$\frac{\partial \sigma_{w}}{\partial q} = -\frac{2M}{\gamma} \left(\frac{\partial \varphi}{\partial t} + \frac{\alpha}{\Delta} \cdot \frac{\partial q}{\partial t} \right).$$
(5.69)

 $\frac{\partial \sigma_w}{\partial \varphi}$ - является вращающим моментом, действующим на намагниченность стенки в плоскости *xy*. Его можно получить также продифференцировав (5.25б) по φ . Если эту производную приравнять к (5.68), то для $\frac{\partial q}{\partial t}$ получим

$$\frac{\partial q}{\partial t} = 2\pi\gamma\Delta M\sin 2\varphi + \alpha\Delta\frac{\partial\varphi}{\partial t}.$$
(5.70)

Это уравнение можно назвать уравнением движения стенки для вращающих моментов, поскольку первый член в правой части пропорционален полю размагничивания на стенке, а второму члену можно приписать смысл демпфирующего момента.

В уравнении (5.69) в левой части стоит давление, оказываемое на стенку. Ранее мы уже убедились, что это давление состоит из двух слагаемых - p_H , обусловленного внешним полем и $p_{_M}$, связанного с размагничивающими полями.

рис. 97. Схематическое изображение поворота намагниченности при движении доменной стенки.

Тогда вместо уравнения (5.69), используя (5.46) и (5.48), можно написать следующее уравнение :

$$\frac{\partial \varphi}{\partial t} = \gamma \left(H - \frac{\xi q}{2M} - \frac{\alpha}{\gamma \Delta} \cdot \frac{\partial q}{\partial t} \right).$$
(5.71)

Здесь третий член в правой части имеет смысл « демпфирующего поля «, а само уравнение (5.71) имеет смысл уравнения движения стенки для давлений. Оба уравнения (5.70) и (5.71) были получены Слончевским и носят его имя. Первое из них показывает, что при движении стенки со скоростью $v = \frac{\partial q}{\partial t}$, учитывая согласно равенству (5.66) пропорциональность скорости производной $\frac{\partial \theta}{\partial t}$, происходит вращение намагниченности вокруг локального размагничивающего поля , лежащего в плоскости *xy*. Уравнение (5.71) показывает , что составляющая намагниченности стенки, лежащая в плоскости *xy*, прецессирует в ней с частотой, пропорциональной эффективному полю $H_{ef} = H - \frac{\xi q}{2M} - \frac{\alpha}{\gamma \Delta} \cdot \frac{\partial q}{\partial t}$.

Исходя из уравнений Слончевского, складывается следующая физическая модель движения стенки : под действием внешнего поля Н магнитные моменты атомов поворачиваются вокруг оси z на угол ф и выходят из плоскости стенки xz

(рис.97). При этом появляется нормальная к стенке компонента намагниченности M_y и соответствующее ей размагничивающее поле H_d равное $H_d = 4\pi M_y = 4\pi M \sin \theta \sin \varphi$.

Поле H_d имеет компоненту H_{\perp} , перпендикулярную магнитным моментам атомов как в стенке , так и в доменах , которая равна

$$H_{\perp} = 4\pi M \sin\theta \sin\varphi \cos\varphi = 2\pi M \sin\theta \sin 2\varphi.$$
 (5.72)

Вокруг этого поля и происходит прецессия магнитных моментов по углу θ . При повороте моментов на угол $\theta = \pi$ доменная стенка перемещается на расстояние , равное ее ширине .

Отметим, что уравнения (5.68) и (5.69) имеют такой же вид, как и уравнения Гамильтона для канонически сопряженных переменных координаты и импульса¹. В случае стенки роль координаты играет координата стенки, а роль импульса $\frac{2M}{\omega}$.

$$\frac{1}{\nu}$$

Таким образом импульс пропорционален ф.

При стационарном движении v = const и $\frac{\partial \varphi}{\partial t} = 0$, что прямо следует из (5.70). В этом случае для одиночной стенки из уравнения (5.71) получим

$$v = \frac{\gamma \Delta}{\alpha} H = \mu H, \tag{5.73}$$

$$\varphi = \frac{1}{2} \arcsin \left[v (2\pi \gamma \Delta M)^{-1} \right] = \frac{1}{2} \operatorname{arcsin} \left(\frac{H}{2\pi \alpha M} \right), \tag{5.74}$$

где

$$\mu = \frac{\gamma \Delta}{\alpha} \tag{5.75}$$

имеет смысл подвижности доменной стенки для линейного режима движения, когда скорость пропорциональна полю. Из уравнения (5.70) следует, что при стационарном движении вращающие моменты остаются постоянными, поэтому стенка перемещается, не изменяя спиновую структуру. Стенка остается блоховской, только в отличии от статического случая все магнитные моменты выходят из плоскости стенки на один и тот же угол ϕ , не изменяяющийся в процессе движения.

Поскольку вращающий момент, приложенный к магнитным моментам в стенке, определяется локальным размагничивующим полем, которое создается из-за выхода этих моментов из плоскости стенки, то, очевидно, что вращающий момент, а, следовательно, и скорость стенки не могут расти беспредельно. Из уравнения (5.70) следует, что максимум скорости при стационарном движении будет при sin2 $\varphi = 1$, т.е. при $\varphi = \pi/4$ или при $\varphi = 5\pi/4$, что соответствует двум

¹ Канонические уравнения Гамильтона имеют вид $\frac{dq_k}{dt} = \frac{\partial H}{\partial p_k}$ и $\frac{dp_k}{dt} = -\frac{\partial H}{\partial q_k}$, где H сумма

кинетической и потенциальной энергий (функция Гамильтона), q_{κ} - обобщенная координата и p_{κ} - обобщенный импульс.

возможным направлениям поворота магнитных моментов в стенке Блоха. Для максимальной скорости v_w из уравнения (5.70) и соответствующего критического поля H_w из (5.73) имеем

$$v_w = 2\pi\gamma\Delta M, \tag{5.76}$$

$$H_{w} = 2\pi\alpha M. \tag{5.77}$$

 $v_{\rm w}$ и $H_{\rm w}$ называются соответственно «уокеровской предельной скоростью» и «уокеровским критическим полем». При поле, большем $H_{\rm w},$ должен наступить срыв стационарного движения стенки.

Рассмотрим, что будет с покоящейся доменной стенкой, если приложить ступенчатое продвигающее поле. При этом будем считать, что при t = 0 q = 0, v = 0 и $\phi = 0$. Раскладывая в ряд (5.71), получим

$$\frac{\partial \varphi}{\partial t} = \frac{\partial \varphi}{\partial t} \bigg|_{t=0} + \frac{\partial^2 \varphi}{\partial t^2} \bigg|_{t=0} \delta t = -\frac{\alpha}{\Delta} \cdot \frac{\partial^2 q}{\partial t^2} \delta t.$$
(5.78)

Продифференцировав (5.25б) и разложив в аналогичный ряд, получим

$$\frac{\partial \sigma_{w}}{\partial \varphi} = 8\pi \Delta M^{2} \delta \varphi.$$
(5.79)

Теперь подставим в уравнение (5.68) то, что получили для производных в (5.78) и (5.79), и продифференцируем по t. Окончательно имеем

 $m_D \frac{\partial^2 q}{\partial t^2} + b \frac{\partial q}{\partial t} + \xi q = 2MH, \qquad (5.80)$

где

$$m_D = \frac{1+\alpha^2}{2\pi\gamma^2 \Delta},\tag{5.81}$$

$$b = \frac{2\alpha M}{\gamma \Delta} = \frac{2M}{\mu}.$$
 (5.82)

Уравнение (5.80) является уравнением осциллятора, в котором коэффициент m_D играет роль массы и обычно называется массой Деринга. Второй член в (5.80) играет роль вязкого затухания, а третий член квазиупругой силы и коэффициент ξ определяется доменной конфигурацией. Если $\xi=0$ и достигнуто динамическое равновесие, т.е. $\frac{\partial^2 q}{\partial t^2} = 0$, то $v = \frac{2MH}{b}$ и подвижность $\mu = \frac{2M}{b}$. При ступенчатом приложении продвигающего поля скорость стенки увеличивается, приближаясь к скорости стационарного движения $v = \mu H$, по экспоненциальному закону со временем нарастания $\tau = m_D/b$. Естественно, что m_D только играет роль некой эффективной массы в силу того, что уравнения движения стенки аналогичны каноническим уравнениям Гамильтона.

5.4.3. Гиротропная сила

В безграничном одноосном ферромагнетике с одиночной доменной стенкой, содержащей вертикальную линию Блоха, рассмотрим силы, которые действуют на такую линию при движениии стенки. Поскольку задача уже не одномерная, то вместо частных производных в уравнения Слончевского (5.68) и (5.69) войдут функциональные производные и, если пренебречь потерями, то имеем

$$\frac{\delta\sigma_{w}}{\delta\varphi} = \frac{2M}{\gamma} \frac{\partial q}{\partial t}, \qquad (5,83)$$

$$\frac{\delta\sigma_{w}}{\delta q} = -\frac{2M}{\gamma} \cdot \frac{\partial\varphi}{\partial t}.$$
(5.84)

Для вариации полной статической энергии в общем виде можно написать

$$\delta W = \iint \left(\frac{\delta \sigma_w}{\delta \varphi} \delta \varphi + \frac{\delta \sigma_w}{\delta q} \delta q \right) dA, \tag{5.85}$$

где dA = dxdz. Если теперь в (5.85) подставим (5.83) и (5.84), то получим

$$\delta W = \frac{2M}{\gamma} \iint \left(\frac{\partial q}{\partial t} \delta \varphi - \frac{\partial \varphi}{\partial t} \delta q \right) dA.$$
 (5.86)

Обозначим координаты центра блоховской линии как x_i и y_i и для определенности примем следующую зависимость угла φ от x

$$tg\left(\frac{\varphi}{2}\right) = \exp\left(-\frac{x - x_i}{\Lambda}\right). \tag{5.87}$$

При принятой нами системе координат

$$\delta q = \delta y_i; \frac{\partial q}{\partial t} = \frac{\partial y_i}{\partial t}.$$
(5.88)

Учитывая (5.34), можем написать

$$\delta\varphi = -\delta x_i \Lambda^{-1} \sin\varphi \tag{5.89}$$

и, следовательно,

$$\frac{\partial \varphi}{\partial t} = -\frac{\partial x_i}{\partial t} \Lambda^{-1} \sin \varphi.$$
(5.90)

Проинтегрируем (5.86) по оси z на отрезке длиной a с центром, совпадающим с центром блоховской линии. Тогда, используя (5.88), вместо (5.86) получим

$$\delta W_i = \frac{2M}{\gamma} \int_{-\frac{a}{2}}^{\frac{a}{2}} \left(\frac{\partial y_i}{\partial t} \delta \varphi - \frac{\partial \varphi}{\partial t} \delta y_i \right) dx.$$
(5.91)

Частные производные от W_i по x_i и y_i дадут нам силы, действующие на элемент стенки, длиной по оси z, равной единице, шириной по оси x равной aи содержащей в центре вертикальную линию Блоха. Используя равенство (5.89), для $\frac{\partial W_i}{\partial x_i}$ получим

$$\frac{\partial W_i}{\partial x_i} = \frac{2M}{\gamma} \int_{-\frac{a}{2}}^{\frac{a}{2}} \left(-\frac{\partial y_i}{\partial t} \Lambda^{-1} \sin \varphi - \frac{\partial \varphi}{\partial t} \cdot \frac{\partial y_i}{\partial x_i} \right) dx.$$
(5.92)

Учитывая, что y_i не зависит от x_i и , используя (5.87) для перехода от переменной $x \\ \kappa \\ \phi$, окончательно получим

$$\frac{\partial W_i}{\partial x_i} = -2\pi M \gamma^{-1} \frac{\partial y_i}{\partial t}.$$
(5.93)

Аналогичным образом, учитывая, что ϕ не зависит от y_i , можно получить

$$\frac{\partial W_i}{\partial y_i} = 2\pi M \gamma^{-1} \frac{\partial x_i}{\partial t}.$$
(5.94)

Выражения (5.93) и (5.94) дают *x* и *y* компоненты так называемой гиротропной силы, действующей на линою Блоха. Видно, что гиротропная сила перпендикулярна скорости. В общем случае с учетом направлений поворота намагниченности по углам θ и ϕ для гиротропной силы **F**_g можно написать

$$\mathbf{F}_{g} = \frac{2\pi M}{\gamma} \mathbf{t} \times \mathbf{v}, \qquad (5.95)$$

где t единичный вектор, касательный к линии Блоха, дается выражением (5.40).

Таким образом при движении доменной стенки на линию Блоха действует сила , которая сносит ее по стенке вбок. В отличие от движения самой стенки движение линии Блоха под действием гиротропной силы происходит не зависимо от того есть диссипация энергии или нет. Подобная гиротропная сила , называемая силой Магнуса , действует на вихри в сверхтекучей жидкости и является частным случаем силы , возникающей по теореме Жуковского при совместном действии циркулярного и набегающего потоков жидкости или газа на находящиеся в них тела.

5.4.4. Экспериментальные данные и привлечение трехмерных моделей движения доменных стенок

Экспериментальные данные по движению доменных стенок получены главным образом на эпитаксиальных пленках ферритов гранатов толщиной в несколько микрон с одноосной анизотропией и легкой осью, перпендикулярной поверхности. Это связано с возможностью оптического наблюдения доменов в видимой области спектра, что не только упрощает задачу визуализации доменов, но и дает возможность исследовать динамику стенок с помощью импульсов света длительностью в несколько наносекуд с фиксацией положения стенки фотографированием или с помощью электронного запоминания изображения.

Основные экспериментальные результаты сводятся к следующему. Прежде всего отметим, что всегда из-за неидеальности образца покоящаяся доменная стенка находится в потенциальной яме и, чтобы выйти из нее и начать движение необходимо некое поле, называемое коэрцитивной силой (H_c). Поэтому, строго говоря, действующим полем является разность между приложенным и коэрцитивным полями. В очень хороших пленках H_c порядка нескольких десятых эрстеда. В согласии с теорией в слабом продвигающем поле выполняется линейная зависимость скорости от поля пока скорость не достигнет некоторой критической величины v_{κ} . Далее при росте продвигающего поля скорости (рис.98), при котором скорость очень слабо увеличивается с ростом поля. В пленках с малыми потерями

Рис. 98. Экспериментальная зависимость скорости доменной стенки от продвигающего поля в пленке феррита граната со следующими параметрами : h = 5,1 мкм, $4\pi M_s = 172$ Гс, $\kappa = 6,6\cdot 10^3$ эрг·см⁻³, $A = 2,54\cdot 10^{-7}$ эрг·см⁻¹, $\gamma = 1,75\cdot 10^7$ Э⁻¹-с⁻¹, $\alpha = 0,09$ [52].

 $(\alpha \sim 10^{-3})$ критическая скорость достигается в полях меньших H_c , поэтому линейный участок экспериментально не наблюдается. Он проявляется только при условии одновременного приложения постоянного поля в плоскости пленки, которое приводит к увеличению критической скорости и соответствующего критического поля. В линейной области при не очень малых потерях для скорости хорошо выполняется формула (5.73) с величиной α , определенной из ферромагнитного резонанса. Но при очень малых потерях скорость растет, а не убывает с ростом потерь, что качественно согласуется с теорией, по которой, как уже отмечалось, при $\alpha = 0$ движения вообще не должно быть. При малом

затухании могут быть возбуждены резонансные колебания стенки. Частота колебаний ~ 10^7 Гц. Величина массы стенки, полученная из этих экспериментов очень близка к расчетной массе Деринга. Что касается критической скорости v_к, то она много меньше скорости Уокера. При движении в режиме насыщения скорости для скорости v_н хорошо выполняется эмпирическая формула

$$v_{\mu} = \gamma \Delta M (1 + 6.9) \,. \tag{5.97}$$

Основное расхождение между экспериментальными данными и теорией одномерной стенки заключается в существенной разнице в величинах v_к и v_w. Чтобы объяснить это, необходимо учесть граничные условия, т.е. то, что в действительности стенка имеет не чисто блоховскую структуру, а скрученную. Слончевским [7] было выдвинуто предположение, что только в очень слабом продвигающем поле структура стенки мало меняется по сравнению со статической, но даже в сравнительно слабом поле у одной из поверхностей пленки в том месте, где неелевская структура переходит в скрученную и где структура наиболее неустойчивая, возникает горизонтальная линия Блоха. Рассмотрим конкретный случай, изображенный на рис.836, и пусть внешнее поле направлено по оси z. Тогда в точке неустойчивости у нижней поверхности направление прецессии намагниченности во внешнем поле противоположно направлению поворота намагниченности по углу о в стенке, что и приводит к возникновению горизонтальной блоховской линии. На рис. 99а показана такая линия, образовавшаяся при $z_{\rm L} = a$ и сместившаяся под действием гиротропной силы. У противоположной поверхности направление прецессии и поворота намагниченности совпадают и горизонтальная блоховская линия не образуется. При изменении направления поля или поворота намагниченности в стенке по углу ф на обратное горизонтальная блоховская линия возникает в точке неустойчивости у верхней поверхности.

Под действием гиротропной силы горизонтальная блоховская линия перемещается по стенке, пока не займет некое устойчивое положение, располагаясь тем ближе к противоположной поверхности пленки, чем больше скорость стенки (рис.99а). В этом интервале скоростей скорость стенки остается линейно связанной с полем . Рост скорости продолжается до тех пор пока линия Блоха не достигнет $z_L = b$, что соответствует положению с неустойчивой структурой у второй поверхности (рис.99б). Скорость при этом достигает максимума v_p линейного режима движения. Для этой скорости получена формула

$$v_p = \frac{23.8\gamma A}{hk^{1/2}} = 9.5 \frac{\Lambda}{h} v_w.$$
(5.98)

Далее предполагается, что возможны два механизма - накопление блоховских линий (рис.99в) или их прорыв к поверхности. При накоплении блоховские линии могут заполнить всю стенку. В случае прорыва предполагается два возможных случая. В первом случае раскручивание линии у поверхности сопровождается возникновением новой горизонтальной линии Блоха в таком месте

на стенке, чтобы импульс стенки при этом не менялся (рис.99г). Но скорость

Рис.99. Схематическое представление зависимость $\phi(z)$ в движущейся доменной стенке при образовании горизонтальных блоховских линий и их накоплении или прорыве [47].

стенки меняет знак до тех пор пока эта новая линия Блоха не дойдет до противоположной поверхности, тогда она прорывается (рис.99д), возникает новая линия Блоха (рис.99в), которая перемещается при этом скорость стенки снова становится положительной. В целом стенка движется поступательно. Во втором варианте прорыва линии Блоха предполагается, что при ее раскручивании происходит прямо переход в структуру, соответствующую рис.99д, и далее образуется новая линия (рис.95е).

На образование блоховских линий и их раскручивание расходуется энергия и это приводит к резкому падению (по оценкам примерно в два раза) скорости и далее скорость не зависит от поля. Таким образом полевая зависимость скорости имеет вид, представленный на рис.100. Если в стенке имеются вертикальные блоховские линии, то они тормозят движение тех участков стенки, где они находятся. Действительно, при наблюдении доменной стенки в процессе ее движения на ней видны прогибы в тех местах, где находятся вертикальные линии Блоха.

Поскольку нет аналитического решения уравнений Слончевского (5.68 и 5.69) по ним делались численные расчеты для конкретных параметров пленок и условий движения стенок. Результаты таких расчетов показали, что при движении стенки даже в линейной области образуется горизонтальная линия Блоха. В продвигающем поле, больше критического, скорость достигает максимума, происходит образование второй линии Блоха, скорость падает и далее либо не зависит от поля, либо слабо растет. Пример расчетной зависимости скорости от продвигающего поля приведен на рис.101. Таким образом при движении стенки в полях, больших критического, происходит

непрерывное зарождение, движение и прорыв горизонтальных линий Блоха. Но,

Рис.100. Теоретическая зависимость нормированной средней скорости доменной стенки от нормированного продвигающего поля Hh/4α(2πA)^{3/2} по [47].

по-видимому, только весьма условно можно говорить о горизонтальных линиях Блоха и их движении, реально структура стенки все время меняется и весьма хаотическая. Можно отметить, что характер зависимости скорости от продвигающего поля, полученный из численных расчетов, близок к тому, что

Рис.101. Расчетная зависимость средней скорости доменной стенки в пленке феррита граната от продвигающего плоя при нескольких значениях постоянного поля, приложенного в плоскости пленки [53]. а) $H_y = 0$; 6) $H_y = 50$ Э; в) $H_y = 100$ Э; г) $H_y = 210$ Э. Пленка имела следующие параметры : h = 4,45 мкм, $A = 1,7 \cdot 10^{-7}$ эрг см⁻¹, $4\pi M_s = 145$ Гс, q = 9,17, $\gamma = 1,29 \cdot 10^7$ Э⁻¹ с⁻¹, $\alpha = 0,019$.

Экспериментальные данные по разгону стенки при приложении поля, соответствующего выходу на скорость насыщения, показывают (рис.102), что сначала в течение нескольких наносекунд наблюдается эффект задержки движения стенки, т.е. стенка не перемещается. По-видимому, происходят какие-то изменения в структуре стенки. Затем стенка набирает скорость, при этом, если материал пленки имеет малые потери, движение стенки хорошо аппроксимируется уравнением движения с эффективной массой, примерно на порядок большей массы Деринга. Возможно это связано с непрерывной генерацией в стенке в процессе ее разгона большого числа горизонтальных блоховских линий. После того, как стенка достигнет некоторой критической скорости, скорость резко падает и выходит на насыщение.Этому режиму движения соответствует линейный участок на кривой рис.102.

Возможно движение стенки и со скоростью больше скорости насыщения. В этом случае понятие стенки, как более или менее ограниченной в каждый момент времени в пространстве переходной области, уже в значительной степени теряет смысл. Переходная область между доменами расширяется и можно говорить скорее не о стенке, а о движущейся волне перемагничивания.

Полевая зависимость скорости 180[°] стенки у слабых ферромагнетиков ортоферритов существенно отличается от того, что наблюдается у ферритов

гранатов. Так в YFeO₃ скорость линейно растет с полем вплоть до скорости поперечного звука (~4·10⁵ м·c⁻¹), далее в каком-то интервале полей от поля не зависит и при достижении полем некоторого критического значения преодолевается звуковой барьер и скорость начинает резко возрастать (рис. 103).

Рис. 102. Зависимость смещения доменной стенки в пленке феррита граната от времени при продвигающем поле 84 Э и поле в плоскости пленки 270 Э [54]. Пленка имела следующие параметры : h = 5,3 мкм, 4πM_s = 157 Гс,

 $H_A = 1800 \Im$, $\gamma = 1.82^{-7} \Im^{-1} c^{-1}$, $\alpha = 0.0013$

Рис. 103. Зависимость скорости движения доменной границы в YFeO₃ от продвигающего магнитного поля при его увеличении (°) и последующем уменьшении (•) [55].

§ 5.5. Динамика цилиндрических магнитных доменов

Рассмотрим цилиндрический магнитный домен с намагниченностью вдоль оси z, находящийся в неоднородном подмагничивающем поле H_z с градиентом вдоль оси x. Если представим домен просто как диполь с фиксированным по направлению магнитным моментом, равным удвоенному магнитному моменту домена, т.е. $\pi r^2 h 2M$, то изменение энергии такого диполя при смещении на dx составит
$$dE = \pi r^2 h 2M \frac{\partial H_Z}{\partial x} dx.$$
 (5.99)

Следовательно, сила, действующая на диполь и направленная по оси x, равна

$$\mathbf{F} = -\frac{\partial E}{\partial x} = -2\pi r^2 h M \frac{\partial H_z}{\partial x}.$$
 (5.100)

Отсюда можно сделать вывод, что и на цилиндрический домен в неоднородном подмагничивающем поле действует сила, пропорциональная намагниченности и градиенту поля. Таким образом домен должен смещаться в сторону более слабого поля, что понятно из общих соображений : намагниченность домена направлена против поля, следовательно, его энергия в поле положительная, поэтому домену выгодно сместиться туда, где поле слабее. Домен при этом будет расширяться, что не окажет принципиального влияния на его свободное перемещение. Перемещение домена сводится к движению доменных границ, а оно может начаться только если сила, действующая на домен, станет больше некоторой коэрцитивной. Такое простое рассмотрение не учитывает того, что цилиндрический домен не просто магнитный диполь. Его окружает стенка со своей магнитной структурой, и , возможно, такой, что имеет место циркуляция намагниченности. В таком случае при движении домена возникает гиротропная сила, действующая на весь домен и направленная перпендикулярно скорости его движения. Домен в общем случае будет двигаться не по градиенту подмагничивающего поля, а под некоторым углом к нему.

Наличие гиротропной силы зависит от того, есть или нет циркуляция намагниченности в стенке. Если есть циркуляция, то величина силы определяется тем, насколько сильна циркуляция. На рис. 104 представлены примеры доменов с простейшими магнитными структурами.

Циркуляция намагниченности в стенке определяется числом S оборотов на 2π , которые совершает намагниченность в середине стенки при ее обходе по кругу против часовой стрелки. Из рис.104а и б видно, что у так называемых хиральных доменов, не имеющих линий Блоха, S=1, следовательно, они перемещаются под углом к направлению градиента подмагничивающего поля.В цилиндрических доменах число линий Блоха всегда четное и, как правило, одного знака, так как линии разного знака обычно аннигилируют. Если на вертикальных линиях Блоха имеются блоховские точки, то для определения параметра S необходимо использовать общую формулу

$$S = \frac{1}{h} \int_{0}^{h} S(z) dz,$$
 (5.101)

где S уже среднее по толщине число оборотов намагниченности. В этом случае величина S может быть и дробной. Пример такого домена приведен на рис. 105. Легко убедиться, что величина S зависит от положения точки Блоха на линии. Если стенка домена содержит много линий Блоха, т.е. домен является жестким,

то параметр S может быть настолько велик, что домен будет перемещаться почти

Рис.104. Возможные простейшие магнитные структуры доменных стенок цилиндрических доменов.

Рис. 105. Цилиндрический домен со стенкой, содержащей две вертикальные линии Блоха и одну точку Блоха, находящуюся по середине одной из линий

перпендикулярно градиенту подмагничивающего поля. В общем случае угол р между направлением движения домена и градиентом поля дается формулой

$$\rho = \arctan \frac{2S(\gamma r)^{-1}}{\alpha (\gamma \Delta)^{-1} + H_{e} v^{-1}}.$$
(5.102)

Эта формула справедлива в области линейной зависимости скорости ОТ продвигающего поля. Реально при малых величинах α так же как и при доменной линейная область только движении стенки имеет место при приложении постоянного поля, перпендикулярного намагниченности в домене.

При очень малых $\alpha \sim 10^{-3}$ в линейной области баланс сил, приложенных к домену (градиентного поля, тормозящих - диссипативной и коэрцитивной, гиротропной) оказывается таким, что ρ практически не зависит от S и скорость домена пропорциональна S. Практически в этом случае домен движется под действием гиротропной силы. Поскольку движение домена определяется параметром S, то при такой простейшей структуре стенки, какая приведена на рис. 105, величину S можно определить в зависимости от параметра α либо по углу сноса домена, либо по величине его скорости и, зная S, рассчитать положение точки Блоха. Таким образом по движению домена можно получить сведения о структуре его стенки. Эта возможность широко использовалась исследователями.

- Рис. 106. Предполагаемое преобразование структуры доменной стенки цилиндрического домена при его движении со скоростью больше некоторой критической [56].
 - а) образование горизонтальных блоховских линий (стрелками показано направление намагниченности в серединах стенки и горизонтальной блоховской линии).
 - б), в), г) развертка стенки домена на различных стадиях преобразования ее структуры

Предположение о возникновении в доменной стенке при ее движении, во всяком случае при достижении критической скорости, горизонтальных линий наиболее убедительное подтверждение в Блоха находит экспериментах с движущимися цилиндрическими доменами. Если следовать такому предположению , то при достижении доменом критической скорости на его стенке У противоположных поверхностей пленки образуются две горизонтальные линии Блоха, которые под действием гиротропной силы движутся каждая к противоположному торцу домена. При этом гиротропная сила равна нулю в тех местах, где скорость домена направлена по касательной к стенке. Поэтому линии Блоха приобретают вид «языков», как это показано на рис. 106а, а развертка доменной стенки приведена на рис. 1066. Эти линии Блоха, двигаясь, доходят до торца домена, при этом образуются две 360⁰-ые вертикальные линии Блоха (рис. 106в). Процесс образования горизонтальных линий Блоха продолжается возникает новая пара линий, они смещаются (рис. 106г) и так далее при этом образуются пары вертикальных линий Блоха. Естественно трудно предположить полную синфазность в образовании и перемещении пар линий, так, как это показано на рис. 1066-г. Таким образом предполагается, что при движении цилиндрического домена усложняется структура его стенки . В общем ЭТО подтверждается и экспериментально. Во-первых , действительно, после движения со скоростью, большей некоторой критической, наблюдается изменение угла отклонения домена относительно направления градиента подмагничивающего поля , что указывает на появление вертикальных линий Блоха. Во-вторых, существует так называемый баллистический эффект, заключающийся в том, что домен после окончания импульса продвигающего поля еще какое-то время продолжает движение. Этот эффект объясняется тем, что при образовании во время движения вертикальных блоховских линий становится большим общий угол закручивания ф намагниченности в стенке домена, а этот угол, как это ранее было показано, эффективному импульсу . Когда пропорционален кончается действие продвигающего поля , благодаря запасенному импульсу домен продолжает лвигаться Происходит «раскручивание» магнитной структуры стенки теоретически пока ф не станет равным нулю. При этом энергия, запасенная в стенке, расходуется на преодоление вязкого и сухого трения. Практически, наиболее вероятно, что из-за дефектов материала «раскрутка» получается не полной и часть импульса остается запасенной . Дальнейшее «раскручивание» может произойти, если каким-либо способом сдвинуть стенки домена с мест их закрепления, скажем, сжав или расширив его, при этом домен может сделать скачек . Поскольку динамика цилиндрического домена зависит от структуры его стенки то, изучая его движение, можно получить важные сведения о структуре его стенки.

Запоминающие устройства на цилиндрических магнитных доменах

То , что статические и динамические свойства цилиндрических доменов были подробно исследованы была разработана технология получения И высококачественных пленок, в которых диаметр домена составлял всего 0,5÷1 мкм , было связано с возможностью создания запоминающих устройств на цилиндрических магнитных доменах. Принцип работы такого устройства заключался в следующем. Пусть магнитная пленка с перпендикулярной магнитной анизотропией находится в подмагничивающем поле необходимом . лля стабильного существования цилиндрических магнитных доменов, и создана замкнутая цепь из локальных магнитных ловушек для цилиндрических доменов, т.е. из неких ям их потенциальной энергии. На рис.107 символически изображена такая цепь ловушек, обозначенных штрихами. Кроме того пусть имеется домены в каком-то месте цепи и одновременно возможность создавать перемещать домены вдоль цепи из одной ловушки в другую. Теперь, если мы хотим записать некую информацию в двоичной системе, то надо в определенной последовательности создавать домены. Пример такой записи изображен на рис.107. Наличие домена в ловушке можно принять за информационную «1», а отсутствие за «О» или наоборот. Если домены перемещать из одной ловушки в соседнюю и так далее, то записанная информация будет курсировать по такому

регистру. Помещенный на пути следования доменов детектор, их регистрирующий, записанную информацию. Принципиальное может считывать отличие запоминающего устройства на цилиндрических доменах от магнитных лент, дисков и цилиндров заключается в том, что информация перемещается по ее носителю, т.е. по магнитной пленке, а не вместе с носителем. Таким образом какие-либо механические отсутствуют элементы, что делает устройство исключительно належным

Рис. 107. Схематическое изображение замкнутой цепи из магнитных ловущек

пля

цилиндрических магнитных доменов. Ловушки сбозначены штрихами,

домены черными кружками. В цепи записана некая информатия в в двоичной системе на цилиндрических доменах в Г - генератор доменов, Д - детектор.

Для перемещения домена по регистру использовались аппликации различной конфигурации из легко перемагничивающегося пермаллоя, наносимые на поверхность пленки. С помощью таких аппликаций создаются магнитостатические ловушки для цилиндрических доменов. Принцип создания такой ловушки поясним на рис.108. Пусть на поверхность пленки нанесена полоска пермаллоя и вдоль нее , т.е. в плоскости пленки приложено магнитное поле H_{ν} , которое намагничивает полоску . Магнитные заряды на ее концах создают магнитное поле, которое имеет z-овую составляющую при этом разного знака на противоположных концах полоски . Для стабильного существования цилиндрических ломенов приложено подмагничивающее поле Ho Результирующее поле H_z является суммой этих двух полей и меняется под пермаллоевой полоской вдоль нее, как это показано на рис.108. Под одним из концов полоски действующее поле Н_z понижается, что приводит к возникновению ловушки цилиндрического домена, так как в этом месте его магнитостатическая энергия будет иметь минимум. Для движения доменов необходимо перемещать что достигается созданием на поверхности пленки цепей из ловушки , периодически повторяющихся пермаллоевых аппликаций различной конфигурации, магнитные полюса на которых перемещаются при вращении поля в плоскости пленки . На рис.109 приведены три вида таких цепей можно проследить как при повороте поля в плоскости домен «следует» за соответствующим магнитным полюсом и переходит с одного элемента на другой, перемещаясь на период структуры при одном обороте поля. Так называемые шевронные аппликации использовались для увеличения размеров домена, что необходимо для его устойчивой регистрации. Если для перемещения цилиндрического домена

достаточно одного такого элемента в ячейке, то, увеличивая последовательно число элементов, можно растянуть домен до необходимого размера, затем зарегистрировав постепенно уменьшать число элементов и сжать домен до исходного круглого сечения.

Рис. 108. Рисунок, поясняющий образование магнитостатической ловушки на концах пермаллоевой аппликации, нанесенной на магнитную пленку. 1 - магнитная пленка, 2 - пермаллоевая аппликация, 3 - цилиндрический домен. Н₀ - постоянное подмагничивающее поле, Н_y - поле в плоскости пленки, H_z- сумма полей H₀ и z-овой составляющей поля рассеяния пермаллоевой аппликации.

§ 5.6. Процесс намагничивания

Приложение к ферромагнетику магнитного поля приводит к увеличению усредненной или результирующей намагниченности, параллельной полю, за счет процессов смещения доменных границ и вращения намагниченности, которая стремится стать параллельной полю . Изменение результирующей процессов намагниченности счет этих техническим за называется намагничиванием . После завершения технического намагничивания и выхода на насыщение, с ростом поля небольшое увеличение намагниченности продолжается , это так называемо истинное намагничивание или парапроцесс.

Прежде чем остановиться на каждом из этих процессов, рассмотрим, как , т.е. изменение направления проходило бы намагничивание спонтанной намагниченности одноосного ферромагнетика, если бы домены обратной намагниченности не образовывались, т.е., другими словами, в течение всего намагничивания сохранялось бы однодоменное состояние . Если процесса пренебречь полем размагничивания, то удельная энергия ферромагнетика состоит из суммы энергии анизотропии E_a и зеемановской энергии E_H. Если поле направлено вдоль оси легкого намагничивания, то для суммарной энергии получим

$$E = E_a + E_H = \kappa \sin^2 \theta - HM_s \cos \theta, \qquad (5.103)$$

Рис. 109. Иллюстрация перемещения цилиндрического домена во время поворота поля в плоскости пленки на 2π в ценях пермаллоевых аппликаций различного типа [8]. а) Т-І типа;

- б) Ү-І типа;

в) шевронных (приведены ячейки, состоящие из трех элементов, поэтому домен вытянут. Для перемещения цилиндрического домена достаточно одного элемента в каждой ячейке.

Равновесное состояние намагниченности определяется из условия

$$\frac{\partial E}{\partial \theta} = 2k\sin\theta\cos\theta + HM_s\sin\theta = 0, \qquad (5.104)$$

$$\frac{\partial^2 E}{\partial \theta^2} = 2k\cos^2\theta - 2k\sin^2\theta + HM_s\cos\theta \phi 0.$$
 (5.105)

Уравнение (5.104) имеет два решения :

- 1. $\sin\theta = 0$ и, следовательно, $\theta = 0$ или $\theta = 180^{0}$ и $M = \pm M_{\rm S}$. Из условия (5.105) имеем устойчивое состояние намагниченности при $H \phi \frac{2k}{M_{S}}$, если $\theta = 0$, и при $H \pi \frac{2k}{M_{S}}$, если $\theta = 180^{0}$. Изменение направления намагниченности на обратное происходит скачком, т.е. путем необратимого вращения при критических полях $H_{a} = \pm \frac{2k}{M_{S}}$. Обычно это поле называют полем анизотропии.
- 2. $2k\cos\theta + HM_{\rm S} = 0$; откуда $\cos\theta = -\frac{HM_s}{2k}$ и, следовательно, $M = M_s \cos\theta = -\frac{M_s^2}{2k}H$. Таким образом восприимчивость, т.е. $\frac{M}{H}$ отрицательная, поэтому это решение соответствует неустойчивому состоянию.

Зависимости М от Н, отражающие оба решения, представлены на рис.110.

Если поле направлено перпендикулярно оси легкого намагничивания, то для удельной энергии имеем

$$E = k\sin^2\theta - HM_s\cos\left(\frac{\pi}{2} - \theta\right) = k\sin^2\theta - HM_s\sin\theta.$$
(5.106)

Устойчивыми решениями в этом случае являются :

- 1. $\cos\theta = 0$ и, следовательно, $\theta = \pm \frac{\pi}{2}$. Из условия (5.105) получаем, что $\theta = \frac{\pi}{2}$ и M = M_S при $H \phi \frac{2k}{M_S}$, далее $\theta = -\frac{\pi}{2}$ и M = -M_S при $H \pi - \frac{2k}{M_S}$.
- 2. $\sin \theta = \frac{M_s}{2k}$, следовательно, $M = M_s \sin \theta = \frac{M_s^2}{2k}H$, т.е. намагниченность M_s^2

меняется с восприимчивостью $\frac{M_s^2}{2k}$.

Таким образом , если поле приложено перпендикулярно легкой оси , то намагничивание , происходит без гистерезиса путем обратимого когерентного , т.е. во всем образце однородного , вращения намагниченности вплоть до выхода в насыщение . По такому закону происходит намагничивание пленки с осью легкого намагничивания , перпендикулярной плоскости пленки , в плоскости пленки . Зависимости намагниченности от поля , соответствующие полученным решениям и для некоторых промежуточных углов , приведены на рис.110.

Рассмотрим теперь намагничивание однодоменной ферромагнитной частицы . Пусть эта частица имеет форму вытянутого сфероида (рис.111) и обозначим коэффициент размагничивания вдоль оси через N_0 , а в любом перпендикулярном

направлении через N_t . Так как сфероид вытянутый , то $N_0 < N_t$. Если пренебречь

Рис. 110. Теоретические зависимости намагниченности от поля для одноосного ферромагнетика при приложении поля под различными углами к оси легкого намагничивания, штриховая линия соответствует неустойчивому решению при приложении поля вдоль оси легкого намагничивания

Рис. 111. Сфероидальная частица с намагниченностью, направленной под углом θ к оси сфероида.

магнитной кристаллографической анизотропией, энергия такой частицы Е_{маг.} в магнитном поле, параллельном оси сфероида, и намагниченностью, направленной под углом θ оси сфероида, состоит из энергии размагничивающего поля и зеемановской энергии, т.е.

$$E_{_{MAZ.}} = \frac{1}{2} M_s^2 \left(N_0 \cos^2 \theta + N_t \sin^2 \theta \right) - H M_s \cos \theta.$$
(5.107)

Здесь в между намагниченностью и осью сфероида. Энергия минимальна при

$$\frac{\partial E_{_{MAE.}}}{\partial \theta} = M_S^2 (N_t - N_0) \sin \theta \cos \theta + H M_S \sin \theta = 0.$$
(5.108)

Отсюда из анализа второй производной легко показать, что энергия минимальна при $\theta = 0$, когда $H > -M_S(N_t - N_0)$ и при $\theta = \pi$, когда $H < M_S(N_t - N_0)$. Изменение направления намагниченности происходит скачком путем необратимого вращения и коэрцитивная сила равна

$$H_{c} = M_{s} (N_{t} - N_{0}), (5.109)$$

т.е. намагничивание происходит так, как это показано на рис. 110 для случая $\theta = 0$, при этом коэрцитивная сила соответствует эффективной константе анизотропии

 $\kappa_{s\phi\phi} = \frac{1}{2} M_s^2 (N_t - N_0)$. Для намагничивания под другими углами ход кривых так же

аналогичен , приведенным на рис.110 . Из равенства (5.109) видно , что коэрцитивная сила растет с увеличением отношения длин осей сфероида . Для сфероидальной частицы железа такая зависимость представлена на рис. 112 .

Рис.112. Зависимость коэрцитивной силы однодоменной сфероидальной частицы железа при намагничивании вдоль оси частицы от отношения длин осей [58].

При большой величине M_S и небольшой кристаллографической магнитной анизотропии у сильно вытянутой частицы анизотропия формы полностью определяет величину H_C . Это используется в технике, где для увеличения плотности записи информации создается магнитная пленка из однодоменных частиц и для увеличения их коэрцитивной силы используется как раз фактор формы.

Перейдем теперь К рассмотрению основного процесса технического намагничивания – движению доменных стенок. Если исходным состоянием является однодоменное, то прежде всего должны образовываться зародыши доменов обратной намагниченности . Зародышеобразование обычно происходит в местах локального понижения анизотропии из-за дефектов. бы в однодоменном Кроме того из-за дефектов казалось часто даже сохраняются небольшие монокристалле остаточные домены обратной намагниченности, которые являются уже готовыми зародышами. Из процесса образования зародышей нельзя исключить также роль тепловых флуктуаций. Поле, при котором начинается рост зародышей, называется полем старта.

Уже упоминалось, что в реальных образцах поступательное движение доменной стенки может происходить только в полях , больших некоторого критического, называемого коэрцитивной силой. Это связано с тем, что из-за дефектов энергия доменной стенки зависит от ее положения в образце. случай 180⁰- ой доменной стенки (рис.95а) и для простоты Рассмотрим что энергия стенки положим , зависит только от координаты у и на некотором рис.113а . участке так , это показано на как

Рис.113. а) зависимость энергии доменной стенки от ее координаты; б) зависимость $\frac{\partial \sigma_w(y)}{\partial y}$ от ее координаты; в) зависимость изменения намагниченности от поля.

При приложении поля на стенку действует магнитное давление p_H , даваемое формулой (5.46). Под действием этого давления стенка смещается, пока p_H не сравняется с давлением p_{σ} квазиупругой силы

$$p_{\sigma} = -\frac{\partial \sigma_{w}(y)}{\partial y}, \qquad (5.110)$$

зависимость которой от у приведена на рис.1136.

Пусть в начальный момент при H = 0 стенка находится в положении 1 (рис.113а) на дне ямы на зависимости $\sigma_w(y)$. С ростом поля стенка обратимо смещается от начального положения 1 до положения 2 , но затам скачком переходит в положение 3 и далее опять обратимо смещается , скажем , до положения 4. При уменьшении поля стенка из положения 4 обратимо переходит в положение 5 , которое соответствует нулевой квазиупругой силе и нулевому полю . Из рис.113а видно , что положение 5 - это дно ямы потенциальной энергии стенки . Изменение намагниченности ΔM , которое происходит при переходе стенки из

положения 1 в положение 5, приведено схематически на рис.113в. Произошло необратимое перемещение стенки , при этом наблюдается гистерезис в зависимости ΔM от H. Скачек из положения 2 в положение 3 и есть скачек Баркгаузена. Зависимость $\sigma_w(y)$ определяется дефектностью образца, поэтому может быть самой разнообразной и не предсказуема. Чтобы стенка могла свободно перемещаться , необходимо поле , достаточное для перехода через самый труднопреодолимый барьер на всем ее пути. Относительно перемещения стенки такое поле называется коэрцитивной силой H_C и, как уже упоминалось выше, для определения действующего поля вычесть H_C .

Мы рассмотрели движение одиночной стенки . Если стенка не одиночная, как , например , на рис.95б , то помимо кавазиупругой силы , обусловленной зависимостью $\sigma_w(y)$, необходимо учитывать давление p_M (5.47) , связанное с изменением магнитостатической энергии из-за изменений размеров доменов в процессе смещения границ между ними . При движении не 180^{0} -ых стенок необходимо учитывать давление , возникающее из-за упругих напряжений , обусловленных изменением магнитоупругой энергии.

силы Для теоретического описания коэрцитивной , обусловленной немагнитными включениями, рассматиривались различные модели закрепления стенки на дефектах и вычислялось поле , необходимое для необратимого смещения стенки . В простейшей модели предполагается , что стенка при отсутствии поля пересекает немагнитные включения. Энергия в этом случае минимальна просто из-за уменьшения площади стенки. В такой модели не учитывается магнитостатическая энергия , возникающая из-за образования магнитных полюсов на границах раздела магнитной и немагнитной фаз. Но и реальную картину . Оказывается , учет такой энергии не отражает размагничивающие поля на границах раздела могут приводить к образованию около немагнитного включения мелких доменов. Таким образом теоретический расчет коэрцитивной силы возможен для неких моделей, которые только приближенно отражают реальное положение. Кроме того в образцах могут быть дефекты разного вида, в том числе и вызванные теми или иными причинами внутренние механические напряжения. Учесть все эффекты, влияющие на коэрцитивную силу, реально не возможно.

Перемещение доменной стенки в слабом поле проиллюстрировано на рис.114, где представлена некая зависимость $\frac{\partial \sigma_w(y)}{\partial y}$ от *y*. Пусть исходным положением

стенки при H = 0 является положение 1. С ростом поля стенка путем обратимых смещений и скачков Баркгаузена из положения 2 в 3 и из 4 в 5, и, наконец, из 6 перейдет в положение 7. Если продолжать увеличивать поле, стенка будет продолжать двигаться дальше, при этом можно ожидать, что чем больше будет поле, тем в среднем при скачке стенка будет проходить больший путь. При уменьшении поля стенка из положения 7 обратимым смещением перейдет в положение 8, далее скачком в 9 и обратимым смещением в 10. Если изменить направление поля на обратное, то стенка с увеличением поля последовательно пройдет положения 11 - 14 и т.д. Таким образом даже в небольших полях происходят необратимые смещения доменных стенок и зависимость намагниченности от поля имеет вид представленный на рис.115.

Рис. 114. Иллюстрация обратимых смещений доменной стенки и скачков Баркгаузена

Рис.115. Зависимость намагниченности от поля в релеевской области

Рассмотрим, каков характер зависимости изменения намагниченности от поля в сравнительно небольших полях. Пусть число скачков, приходящихся на единицу объема, которые происходят при изменении поля от H до dH равно $f_0(H)dH$, где $f_0(H)$ функция распределения, которая близка к гауссовской. Поскольку само поле и интервал полей небольшие, можно считать $f_0 = \text{const} u$, следовательно, число скачков равно f_0dH . При каждом скачке в

рассматриваемом интервале полей стенка проходит путь от препятствия, преодолеваемого в поле H, до препятствия, преодолеваемого только в поле большем чем H + dH. Можно считать, что этот путь пропорционален числу препятствий, преодолеваемых в поле меньшем H, т.е. f_0H . Необратимое изменение намагниченности при увеличении поля от H до H + dH пропорционально произведению числа скачков на путь стенки при каждом скачке т.е.

$$dM_{Heo\deltap} = cf_0^2 H dH , \qquad (5.111)$$

где с – коэффициент пропорциональности. Отсюда при увеличении поля от нуля до H

$$M_{\text{neofp.}} = \int_{0}^{H} cf_{0}^{2}HdH = \frac{1}{2}cf_{0}^{2}H^{2}.$$
 (5.112)

Квадратичная зависимость изменения намагниченности в малых полях, обусловленная необратимыми смещениями доменных границ отражена в эмпирическом законе Релея

$$M - M' = \chi_a (H - H') \pm \frac{1}{2} \eta (H - H')^2, \qquad (5.113)$$

где М' - начальная величина намагниченности при поле Н', М – конечная величина намагниченности при поле Н, χ_a – начальная восприимчивость и η - так называемый коэффициент Релея . Знак плюс соответствует восходящей ветви намагниченности , а минус нисходящей . Если исходным состоянием является размагниченное , которое может быть получено нагреванием образца выше точки Кюри или перемагничиванием в переменном поле с постепенно убывающей до нуля амплитудой , то из (5.113) получим

$$M = \chi_a H + \frac{1}{2} \eta H^2.$$
 (5.114)

Отсюда видно, что χ_a характеризует обратимые изменения намагниченности. Если в случае циклического перемагничивания, т.е. движению по контуру ABA (рис.115), максимальные величины поля и намагниченности обозначить соответственно H_m (- H_m) и M_m (- M_m), то из формулы (5.113), используя восходящую или нисходящую ветвь, получим

$$M_{m} = \chi_{a}H_{m} + \eta H_{m}^{2}.$$
 (5.115)

Подставив (5.115) в (5.113), для восходящей ветви получим

$$M = (\chi_a + \eta H_m)H + \frac{1}{2}\eta (H_m^2 - H^2)$$
 (5.116)

и для нисходящей

$$M = (\chi_a + \eta H_m)H + \frac{1}{2}\eta (H_m^2 - H^2).$$
 (5.117)

Для остаточной намагниченности M_R , т.е. намагниченности при H = 0, получим

$$M_{R} = \frac{1}{2} \eta H_{m}^{2}.$$
 (5.118)

Формулы (5.116) и (5.117) удобны для практического использования . Потери при перемагничивании W равны

$$W = \oint H dM = \frac{4}{3} \eta H_m^3. \tag{5.119}$$

Поскольку зависимость намагниченности от поля даже в слабых полях имеет вид петли , то сигналы , проходящие через трансформаторы с ферромагнитными сердечниками , претерпевают нелинейные искажения , а потери быстро растут с увеличением амплитуды поля .

Так как в технике для характеристики материалов обычно пользуются индукцией, то далее рассмотрим зависимости индукции от напряженности поля вплоть до выхода в техническое насыщение. Для поликристаллического образца ферромагнетика типичный вид такой зависимости приведен на рис.116.

Рис. 116. Кривые намагничивания и перемагничивания (гистерезис) ферромагнетика. ОА – начальная или нулевая кривая намагничивания ..

В области Релея еще только начинается процесс необратимого смещения доменных границ. С увеличением поля этот процесс интенсивно развивается до тех пор, пока намагниченность каждого кристаллита поликристаллического образца не будет ориентирована по оси легчайшего намагничивания кристаллита, составляющей наименьший угол с направлением поля. Этот наиболее крутая часть кривой

Рис. 117. Симметричные петли гистерезиса при различных амплитудах поля . ОА – основная или нормальная кривая намагничивания .

С завершением в основном процессов смещения наступает процесс вращения намагниченности отдельных кристаллитов к направлению поля и, когда и этот процесс завершится, заканчивается так называемый процесс технического намагничивания. Достигается насыщение и при дальнейшем увеличении поля намагниченность растет за счет подавления полем тепловых колебаний магнитных моментов атомов. Это есть истинное намагничивание или парапроцесс, который заметнее проявляется вблизи точки Кюри. Кривая намагничивания от исходного размагниченного состояния, т.е. кривая ОА, называется начальной или нулевой ветвью. В области полей вблизи технического насыщения зависимость намагниченности от поля можно записать в виде ряда по степеням $\frac{1}{H}$ (закон приближения к насыщению) [59]

$$M = M_{s} \left(1 - \frac{A}{H} - \frac{B}{H^{2}} - \frac{C}{H^{3}} \right) + \chi_{npum} H + D\sqrt{H}.$$
 (5.120)

Здесь член $\frac{A}{H}$ отражает влияние неоднородностей (поры, немагнитные включения, механические напряжения вокруг дислокаций), приводящих к локальной наведенной анизотропии, члены $\frac{B}{H^2}$ и $\frac{C}{H^3}$ связаны с анизотропией (B ~ k², C ~ k²), т.е. с

процессами вращения . Член , линейно зависящий от поля , отражает в реальном ферромагнетике влияние примесей парамагнитных ионов . Наконец , последний член связан с парапроцессом .

У монокристаллов кривая намагничивания может иметь другой вид, так при намагничивании кубического кристалла с осью легкого намагничивания <100> полем, направленным вдоль [111] или [100], наблюдаются участки скачкообразного необратимого вращения. Вообще насыщение в монокристаллах вдоль главных направлений достигается в конечных полях, приближение же к насыщению в произвольных направлениях формально мало чем отличается от описания этого процесса в поликристалле.

При циклическом изменении поля от точки A (рис.116) индукция описывает симметричную петлю гистерезиса ABCDKA. Отрезок OB соответствует остаточной индукции (намагниченности), отрезок OC – коэрцитивной силе. Если снимать симметричные петли гистерезиса при возрастающей амплитуде поля (рис.117), то вершины этих петель ложатся на кривую OA, которая называется основной или нормальной кривой намагничивания. Симметричная петля гистерезиса, в которой достигается техническое насыщение, называется предельной петлей гистерезиса. Все петли гистерезиса и порводя итог, перечислим все причины магнитного гистерезиса : 1) задержки в движении доменных границ, обусловленные дефектностью материала; 2) необратимые вращения намагниченности ; 3) процессы образования зародышей доменов с намагниченностью направленной более благоприятно относительно направления поля.

Поскольку при наличии гистерезиса связь между индукцией (намагниченностью) и полем нелинейная, то для характеристики материала пользуются несколькими видами магнитной проницаемости (восприимчивости). Магнитная проницаемость, соответствующая начальной магнитной восприимчивости , также называется начальной (μ_a). Заметим, что для χ_a обычно хорошо выполняется эмпирическая формула $\chi_a = \frac{M_s}{H_c}$. Магнитная проницаемость, определяемая как

$$\mu_{diff} = \frac{dB(H)}{dH},\tag{5.121}$$

называется дифференциальной . Реверсивная или обратимая магнитная проницаемость μ_r определяется из несимметричных частных петель , например , CD на рис.117 как

$$\mu_r = \lim \frac{\Delta B[B(H_0), \Delta H]}{\Delta H}.$$

$$\Delta H \to 0$$
(5.122)

Величина μ_r максимальна, когда образец размагничен и подмагничивающее поле равно нулю. Таким образом максимальное значение μ_r совпадает с μ_a . Полной или нормальной магнитной проницаемостью μ_n называется величина, определяемая как

$$\mu_n = \frac{B(H_0)}{H_0} \tag{5.123}$$

на начальной или нулевой ветви . Характерные зависимости μ_a , μ_{diff} , μ_r и μ_n от H_0 приведены на рис.118

Рис.118. Полевые зависимости магнитных проницаемостей.

§ 5.7. Стабилизация магнитного состояния и динамические эффекты процесса намагничивания

На процессы намагничивания большое влияние оказывает наведенная магнитная анизотропия, которая стабилизирует направление намагниченности во всех точках кристалла, как в доменах, так и в доменных стенках. Поскольку наведенная анизотропия обусловлена неким распределением примесных ионов, вакансий и т.п., то установление такого распределения определяется диффузионными процессами. Скорость таких процессов зависит от распределения постоянных времени, спектр которых чаще всего бывает непрерывным с выделенным средним значением и сильно зависит от температуры, так как для диффузионных процессов необходима тепловая энергия активации. Возможны два крайних случая : 1) при данной температуре во времени не происходит существенного изменения наведенной анизоторопии, она как бы «заморожена», что приводит к так называемому перминвар-эффекту ; 2) стабилизация намагниченности меняется во времени, что приводит к эффектам, называемым магнитным последействием.

Перминвар-эффект

При сильной стабилизации направлений намагниченности в доменах и в доменных стенках последние находятся в глубоких ямах потенциальной энергии и при приложении поля с его ростом стенки остаются в них вплоть до значительных величин напряженности . В начальной стадии роста поля фактически отсутствует область Релея , т.е. магнитная проницаемость остается постоянной и только при достижении полем определенной критической величины (поля стабилизации H_p) происходит срыв доменных границ и развитие процесса их смещения . При

циклическом изменении поля наблюдается перетянутая или двойная петля гистерезиса (рис.119)

Рис.119. Перетянутая или двойная петля гистерезиса . Н_р – критическое поле .

Практически, как правило, в очень сильных полях стягивание исчезает. Пермиварэффект наблюдается в сплавах железа и никеля с кобальтом, а также в ферритах с небольшим содержанием Co²⁺. Эффект особенно заметно выражен в тех случаях, когда кристаллографическая магнитная анизотропия невелика и подавляется сильной наведенной анизотропией.

Магнитное последействие

Магнитное последействие это запаздывание изменения намагниченности при изменении магнитного поля . Эффект связан главным образом с диффузионными процессами , постоянные времени которых сравнимы со временем изменения поля или временем наблюдения . Рассмотрим простой пример . Пусть образец длительное время находится в магнитном поле H_0 , а затем в какой-то момент времени поле скачком возрастает до величины H_1 (рис.120а)

Рис.120. Иллюстрация увеличения намагниченности во времени благодаря магнитному последействию.

а) скачек магнитного поля;

б) изменение во времени намагниченности.

Намагниченность при этом увеличивается скачком на величину ΔM и далее с течением времени постепенно растет (рис.120б). На какую величину произойдет постепенное увеличение зависит от величины ΔM и от того, какому участку кривой намагничивания соответствует исходное состояние в поле H₀ : если участку интенсивного роста намагниченности за счет смещения доменных границ, то увеличение значительное, если же области обратимого вращения намагниченности, то увеличение небольшое . Явление постепенного роста намагниченности , которое часто называют магнитной вязкостью, связано с процессом изменения условий стабилизации доменных границ в процессе изменения магнитного состояния, при этом доменных границ, как не сместившихся в результате скачкообразного изменения намагниченности, так и скачком сместившихся, но остановившихся перед высоким барьером. Изменение условий стабилизации связано с диффузионными процессами, которые могут быть и достаточно быстрыми, фактически электронными , если диффундируют разновалентные ионы одного и того же элемента, например, меняются местами Mn³⁺ и Mn⁴⁺. В переменном поле отставание изменений намагниченности от поля приводит к потерям энергии. В некоторых случаях, если образец длительное время находился в размагниченном состоянии и не подвергался внешним воздействиям, при приложении сильного переменного поля, даже достаточного для получения предельной петли гистерезиса, петля сразу не формируется и только по истечении многих минут постепенно приближается к предельной.

Магнитное последействие проявляется также в явлении дезаккомодации, которое заключается в уменьшении со временем магнитной проницаемости. Так, если образец перевести в размагниченное состояние, например, путем перемагничивания его в переменном поле с постепенно убывающей амплитудой и затем снять временную зависимость магнитной проницаемости в небольшом поле, т.е. $\mu_a(t)$, то оказывается, что μ_a с течением времени уменьшается. Пример такой зависимости

приведен на рис.121. Причиной дезаккомодации магнитной проницаемости является

постепенное закрепление размагниченного состояния благодаря стабилизации доменных границ, путем диффузионных процессов.

Частотная зависимость магнитной проницаемости (магнитные спектры)

Для ферритов, применяемых на различных частотах, важной характеристикой является частотная зависимость начальной магнитной проницаемости и потерь. Такие зависимости часто называют магнитными спектрами. Если магнитное поле меняется по синусоидальному закону, т.е. $H = H_0 e^{i \omega t}$, то индукция в ферромагнетике из-за потерь отстает по фазе, скажем, на угол δ . Следовательно, $B = B_0 e^{i(\omega t - \delta)}$. Отсюда для магнитной проницаемости имеем

$$\mu = \frac{B}{H} = \frac{B_0}{H_0} e^{-i\delta} = \frac{B_0}{H_0} \cos \delta - i \frac{B_0}{H_0} \sin \delta = \mu' - i\mu'', \qquad (5.124)$$

где $\mu' = \frac{B_0}{H_0} \cos \delta$ и $\mu'' = \frac{B_0}{H_0} \sin \delta$. μ' является истинной магнитной проницаемостью

и характеризует ту часть магнитной индукции , которая меняется синфазно с H . $\mu^{\prime\prime}$ соответствует той части индукции , которая отстает по фазе от H на 90^0 . Потери обычно характеризуются отношением

$$\frac{\mu''}{\mu'} = \frac{\sin\delta}{\cos\delta} = tg\delta.$$
(5.125)

Для практического применения желательно чтобы tgb был как можно меньше .

Изменения намагниченности обусловлены колебаниями доменных границ и вращением намагниченности, поэтому частотная зависимость μ' и μ'' определяется критическими частотами этих двух процессов, т.е. резонансом доменных границ и более высокочастотным резонансом прецессии намагниченности в доменах, которое обычно называется естественным ферромагнитным резонансом, поскольку роль подмагничивающего поля играет поле магнитной анизотропии. Явление ферромагнитного резонанса подробно будет рассмотрено в гл. 7 . В зависимости от свойств феррита, главным образом от величины поля анизотропии, резонансные частоты этих двух процессов могут различаться даже по порядку величины, но могут

быть так близки, что экспериментально наблюдается одна область дисперсии. В последнем случае разделение причин дисперсии не всегда удается. Следует отметить, что дисперсия магнитной проницаемости, связанная с колебаниями доменных границ, может носить как резонансный, так и релаксационный характер, в том случае, если велико затухание. Примеры характера таких зависимостей представлены на рис.122, а экспериментальный магнитный спектр для одного из ферритов со структурой шпинели приведен на рис.123.

Рис 122. Частотные зависимости μ' и μ'' (магнитные спектры) в случае а) в случае резонанса, б) релаксации

Рис. 123. Магнитный спектр поликристаллического никелевого феррита при комнатной температуре. І – колебания доменных границ, ІІ – естественный ферромагнитный резонанс [61].

В последнем случае хорошо различаются две области дисперсии : I - колебаний доменных границ и II - естественного ферромагнитного резонанса . У гексаферритов с плоскостью легкого намагничивания (феррокспланов) по сравнению с ферритами шпинелями область дисперсии сдвинута в область высоких частот , что связано с малой анизотропией в базисной плоскости . Особенно хорошие частотные

характеристики с точки зрения практического применения имеют текстурированные образцы феррокспланов, в которых специальной технологической обработкой удается ориентировать гексагональные оси отдельных кристаллитов приблизительно по одному направлению (рис.124)

Рис. 124. Магнитный спектр гексаферрита Со₂Z (ферроксплана) [62].

О - текстурированный образец.

Источником дисперсии магнитной проницаемости могут быть и механические резонансы, возбуждаемые за счет магнитоупругой связи в образцах с большой магнитострикцией . Возможно возникновение и так называемого размерного резонанса, когда длина электромагнитной волны в веществе сравнима с геометрическими размерами образца . В ферритах электрическое сопротивление велико, поэтому влияния вихревых токов на дисперсию магнитной проницаемости практически нет.

ГЛАВА 6

Индуцированные магнитным полем магнитные фазовые переходы

Если в магнитоупорядоченном состоянии имеется более одной магнитной подрешетки, т.е. вещество не является ферромагнетиком, то внешнее магнитное поле всегда стремится исказить магнитную структуру так, чтобы суммарная энергия намагниченностей в магнитном поле была как можно меньше. Насколько существенны будут искажения зависит от соотношения между внешним магнитным полем и эффективными полями внутренних взаимодействий (обменного и анизотропии). С ростом поля изменения магнитной структуры могут происходить как постепенно, так и скачком и являются индуцированными магнитными фазовыми переходами. В этой главе будут рассмотрены такие индуцированные фазовые переходы в двухподрешеточных антиферромагнетиках и в коллинеарных ферримагнетиках.

§ 6.1 Индуцированные полем спин-ориентационные фазовые переходы в антиферромагнетиках

Из самых общих качественных соображений можно предположить , что у двухподрешеточного антиферромагнетика должно быть два критических поля . Одно связанное с тем , что $\chi_{\perp} > \chi_{\parallel}$ и поле , параллельное антиферромагнитной оси , стремится повернуть намагниченность подрешеток так , чтобы они стали перпендикулярны полю и , если энергия магнитного взаимодействия станет больше энергии анизотропии , произойдет переориентация намагниченностей подрешеток . Второе критическое поле связано с разрушением антиферромагнитной структуры при равенстве магнитной и обменной энергий .

Рассмотрим оба возможных изменения магнитной структуры более подробно . Пусть внешнее поле направлено по антиферромагнитной оси, а намагниченности подрешеток отклонены от этой оси на угол θ . В этом случае магнитная энергия E_н равна

$$E_{\mu} = -\frac{1}{2} \chi H^{2} = -\frac{1}{2} \Big(\chi_{\mu} \cos^{2} \theta + \chi_{\perp} \sin^{2} \theta \Big) H^{2}.$$
 (6.1)

Для энергии анизотропии по аналогии с одноосными ферромагнетиками можно считать справедливой формулу (4.2) и ограничимся первым членом разложения . Равновесное состояние ищем из условия минимума суммарной энергии

$$E = E_H + E_a, \tag{6.2}$$

т.е.

$$\frac{\partial E}{\partial \theta} = \left[2k - (\chi_{\perp} - \chi_{ll})H^2\right]\sin\theta\cos\theta = 0, \qquad (6.3)$$

$$\left[2k - \left(\chi_{\perp} - \chi_{ll}\right)H^{2}\right]\cos^{2}\theta \neq 0.$$
(6.4)

Решением уравнения (6.3) при выполнении условия (6.4) являются

 $\theta = 0$ при

$$H = H_{on.} \pi \sqrt{\frac{2\kappa}{\chi_{\perp} - \chi_{ll}}}$$
(6.5)

и $\theta = 90^{\circ}$ при

$$H = H_{on.} \phi \sqrt{\frac{2\kappa}{\chi_{\perp} - \chi_{ll}}}.$$
(6.6)

Таким образом H_{оп.} является критическим полем для переориентации намагниченностей подрешеток перпендикулярно антиферромагнитной оси (опрокидывание намагниченностей – "спин-флоп ", рис.125б).

Рис. 125. Взаимная ориентация намагниченностей подрешеток одноосного Антиферромагнетика в магнитном поле Н.

a) $H < H_{onp.}$ b) $H_{onp.} < H < H_{ex.}$ b) $H > H_{ex.}$

Если примем за M_0 намагниченность подрешетки, то при учете только межподрешеточного взаимодействия обменное поле $H_E = wM_0$, отсюда, учитывая равенство (3.75), $\chi_{\perp} = \frac{M_0}{H_E}$. По аналогии с ферромагнетиками будем считать, что поле анизотропии $H_a = \frac{2\kappa}{M_0}$. Если теперь допустить, что $\chi_{\perp} >> \chi_{\parallel}$, то после замены χ_{\perp} и κ на их выражения через соответствующие эффективные поля получим

$$H_{on.} = \sqrt{2H_E H_a}.$$
(6.7)

После опрокидывания подрешеток восприимчивость становится близкой к χ_{\perp} . Дальнейшее увеличение поля приводит к постепенному сближению направлений намагниченностей подрешеток пока они при критическом поле $H_{cx.}$ не станут

Рис. 126. Зависимость намагниченности антиферромагнетика от внешнего магнитного поля при поле параллельном (||) и перпендикулярном (⊥) антиферромагнитной оси. Поля схлопывания магнитных подрешеток для случаев (||) и (⊥) не совпадают. Пунктиром приведена кривая Бриллюэна.

Рис. 127. Зависимость намагниченности от поля для монокристалла CuCl₂· 2H₂O [63]. Намагниченности подрешеток направлены по оси a. 1 - T = 4,1 K, $H \parallel a$, 2 - T = 4,1 K, $H \parallel b$; 3 - T = 3,02 K, $H \parallel a$; 4 - T = 3,02 K, $H \parallel b$; 5 - T = 1,57 K, $H \parallel a$; 6 - T = 1,57 K, $H \parallel b$.

Схематически зависимость намагниченности от поля приведена на рис.126 и обозначена как \parallel . Примером экспериментальных данных могут служить результаты исследования орторомбического антиферромагнетика CuCl₂ · 2H₂O (рис.127), температура Нееля у которого очень низкая (4,3 K) и поэтому критические поля не столь велики.

При приложении поля перпендикулярно антиферромагнитной оси угол между направлениями намагниченностей подрешеток с увеличением поля постепенно уменьшается пока подрешетки не схлопнутся . Такая зависимость намагниченности от поля приведена на рис.126 и обозначена как \perp . У некоторых антиферромагнетиков может оказаться , что поле анизотропии больше обменного . В этом случае при приложении поля перпендикулярно антиферромагнитной оси стадии опрокидывания подрешеток нет и при некотором критическом поле подрешетки схлопываются . Зависимость намагниченности от поля для этого случая приведена на рис.128 . Такой спин-ориентационный переход называется метамагнитным .

Рис. 128. Зависимость намагниченности от поля при метамагнитном фазовом переходе. Пунктиром показана бриллюэновская кривая.

§ 6.2 Индуцированные магнитным полем неколлинеарные магнитные структуры в ферримагнетиках

Рассмотрим двухподрешеточный ферримагнетик с магнитными подрешетками А и В и будем считать, что для эффективных полей, действующих на эти подрешетки, справедливы формулы

$$\mathbf{H}_{A} = \mathbf{H} - w\mathbf{M}_{B},$$

$$\mathbf{H}_{B} = \mathbf{H} - w\mathbf{M}_{A},$$

(6.8)

где коэффициент обменного взаимодействия w > 0. Естественно, что намагниченности подрешеток направлены вдоль действующих на них эффективных полей. Для компонент намагниченностей подрешеток , перпендикулярных магнитному полю, имеем

$$(M_{A})_{\perp} = -\chi_{A} w (M_{B})_{\perp},$$

$$(M_{B})_{\perp} = -\chi_{B} w (M_{A})_{\perp}.$$
(6.9)

Здесь χ_A и χ_B эффективные магнитные восприимчивости подрешеток . Уравнения (6.9) имеют тривиальное решение $(M_A)_{\perp}=(M_B)_{\perp}=0$, которое нас не интересует, и нетривиальное, при котором детерминант равен нулю, откуда

$$1 - \chi_A \chi_B w^2 = 0. (6.10)$$

Это решение соответствует неколлинеарной структуре. Для компонент намагниченностей , параллельных внешнему полю , имеем

$$(M_A)_{ll} = \chi_A [H - w(M_B)_{ll}], \qquad (6.11)$$

$$(M_B)_{ll} = \chi_B [H - w(M_A)_{ll}]$$
 (6.12)

После разделения в уравнениях (6.11) и (6.12) переменных (МА)ІІ и (МВ)ІІ получим

$$(1 - \chi_A \chi_B w^2) (M_A)_{ll} = (1 - \chi_B w) \chi_A H, (1 - \chi_A \chi_B w^2) (M_B)_{ll} = (1 - \chi_A w) \chi_B H.$$

$$(6.13)$$

Поскольку справедливо равенство (6.10), то при конечных $(M_A)_{ll}$ и $(M_B)_{ll}$ 1- $\chi_A w = 0$ и 1- $\chi_B w = 0$, т.е.

$$\chi_A = \chi_B = \frac{1}{w} \tag{6.14}$$

и для неколлинеарной структуры или, другими словами, в угловой фазе

$$H_A = wM_A,$$

$$H_B = wM_B.$$
(6.15)

Из (6.15) следует, что в угловой фазе намагниченности подрешеток не зависят от внешнего поля.

Определим теперь результирующую намагниченность . Учитывая равенства (6.15), для суммы \mathbf{M}_{A} и \mathbf{M}_{B} получим $\mathbf{M}_{A} + \mathbf{M}_{B} = \frac{1}{w} (\mathbf{H}_{A} + \mathbf{H}_{B})$ и далее, если заменим \mathbf{H}_{A} и \mathbf{H}_{B} , воспользовавшись формулами (6.8), то окончательно получим

$$\mathbf{M}_A + \mathbf{M}_B = \frac{1}{w} \mathbf{H}.$$
 (6.16)

Эту связь между тремя векторами иллюстрирует рис.129. Обозначим углы между полем **H** и намагниченностями подрешеток M_A и M_B соответственно θ_A и θ_B (рис.129) и для определенности будем считать $M_A > M_B$. Величины ${H_A}^2$ и ${H_B}^2$ равны сумме квадратов компонент результирующих полей вдоль и перпендикулярно направлению **H** и, принимая во внимание равенства (6.8), получим

$$H_{A}^{2} = (H - wM_{B}\cos\theta_{B})^{2} + w^{2}M_{B}^{2}\sin^{2}\theta_{B},$$

$$H_{B}^{2} = (H - wM_{A}\cos\theta_{A})^{2} + w^{2}M_{A}^{2}\sin^{2}\theta_{A}.$$
(6.17)

Рис. 129. Взаимная ориентация векторов МА, МВ и Н в угловой фазе.

Откуда

$$H_{A} = \left(H^{2} + w^{2}M_{B}^{2} - 2HwM_{B}\cos\theta_{B}\right)^{\frac{1}{2}},$$

$$H_{B} = \left(H^{2} + w^{2}M_{A}^{2} - 2HwM_{A}\cos\theta_{A}\right)^{\frac{1}{2}}.$$
(6.18)

Из уравнений (6.18), заменяя H_A и H_B на их выражения через M_A и M_B из равенств (6.15), для $\cos\theta_A$ и $\cos\theta_A$ получим

$$\cos \theta_{A} = \frac{H^{2} - w^{2} \left(M_{B}^{2} - M_{A}^{2}\right)}{2wHM_{A}},$$

$$\cos \theta_{B} = \frac{H^{2} - w^{2} \left(M_{A}^{2} - M_{B}^{2}\right)}{2wHM_{B}}.$$
(6.19)

Уравнения (6.19) позволяют найти критические поля H_1 и H_2 , ограничивающие угловую фазу. Для этого положим в одном случае $\theta_B = \pi$, а в другом $\theta_B = 0$. Решая квадратные уравнения относительно H_1 и H_2 , получим

$$H_{1} = w(M_{A} - M_{B}),$$

$$H_{2} = w(M_{A} + M_{B}).$$
(6.20)

Из уравнений (6.19) можно получить зависимость углов θ_A и θ_B от внешнего поля начиная от коллинеарной ферримагнитной и до ферромагнитной фазы (рис.130).

Кривые температурных зависимостей критических полей H_1 и H_2 определяются зависимостями от температуры M_A и M_B и являются линиями фазовых переходов 2-го рода между соответствующими магнитными фазами.

Рассмотрим конкретный случай редкоземельных ферритов-гранатов. Напомним, что в них между ионами железа, находящимися в тетраэдрических и октаэдрических положениях, существует сильное обменное взаимодействие и $H_{o \delta M}^{Fe-Fe} \cong 10^6$ Э. Что касается взаимодействия между редкоземельной подрешеткой и железными, то оно на

порядок слабее и Н_{обм.}^{R-Fe} ≅ 10⁵ Э. Взаимодействие внутри редкоземельной подрешетки

Рис. 130. Зависимость углов разворота намагниченностей подрешеток от поля для изотропного ферримагнетика [64]:

еще слабее , не играет в магнитном упорядочении существенной роли и его можно не учитывать . Исходя из такого соотношения между обменными взаимодействиями , для качественного рассмотрения можно считать систему тетраэдрической и октаэдрической подрешеток железа как единую железную подрешетку. Таким образом задача сводится к рассмотрению двух подрешеток - железной с суммарной намагниченностью M_{Fe} = const и редкоземельной с намагниченностью M_R . При высоких температурах в слабом поле M_{Fe} || **H** , а редкоземельную подрешетку можно считать парамагнитной с M_R , направленной против **H**. Таким образом поле , действующее на редкоземельную подрешетку , равно wM – **H**. При H = wM_{Fe} действующее поле равно нулю и основное состояние ионов редкоземельной подрешетки становится вырожденным , что с энергетической точки зрения не выгодно и поэтому ниже некоторой температуры T* возникает неколлинеарная магнитная структура. Этим снимается вырождение и

$$\mathbf{H}_{\text{Re}} = \mathbf{H} - w\mathbf{M}_{Fe} \neq 0, \qquad (6.21)$$

так как теперь M_{Fe} и H неколлинеарные . Получающаяся теоретически магнитная фазовая диаграмма в координатах H - T приведена на рис.131а . Следует отметить , что при $T < T^*$ неколлинеарной структуре соответствует целая область на H - T диаграмме . То , что при $T > T^*$ неколлинеарная структура не возникает , можно объяснить тем , что намагничивание редкоземельной подрешетки внешним полем , т.е. парапроцесс в ней , сравнительно сильный и ее намагниченность обращается в нуль в поле , меньшем первого критического . В неколлинеарной фазе справедливо равенство (6.21) и , возводя обе стороны в квадрат , получим

$$H_{\rm Re}^2 = H^2 + w^2 M_{\rm Fe}^2 - 2w H M_{\rm Fe} \cos \theta_{\rm Fe}.$$
 (6.22)

Из треугольника рис.129 при замене индексов А-Fe и В-R получим

$$M_{R}^{2} = \frac{H^{2}}{w^{2}} + M_{Fe}^{2} - 2\frac{H}{w}M_{Fe}\cos\theta_{Fe}.$$
 (6.23)

Если выразить $\cos\theta_{Fe}$ из (6.23) и подставить в уравнение (6.22), то получим

$$H_R = wM_R. \tag{6.24}$$

Это значит, что в угловой фазе намагниченность редкоземельной подрешетки не зависит от внешнего поля, т.е. парапроцесс в ней отсутствует.

В том случае, если есть точка компенсации, фазовая диаграмма существенно меняется (рис.131б). В области точки компенсации критическое поле появления неколлинеарной структуры теоретически обращается в нуль. Это открывает возможность в этом случае магнитные фазовые диаграммы исследовать экспериментально. Полученные результаты хорошо согласуются с теорией.

Учет магнитной анизотропии существенно влияет на возникновение неколлинеарной магнитной структуры особенно вблизи точки компенсации. Приведем результаты расчета для наиболее простого случая - одноосного ферримагнетика. Если поле параллельно оси легкого намагничивания, анизотропия препятствует развороту намагниченностей подрешеток и при $T \cong T_{\kappa}$ также как у антиферромагнетиков разворот начинается при критическом поле $H_{kn} \approx \sqrt{H_F H_a}$.

Если поле перпендикулярно оси легкого намагничивания, то по мере его роста разворот намагниченностей подрешеток также как и у антиферромагнетиков происходит монотонно начиная с нулевого поля и заканчивается схлопыванием подрешеток. При удалении по температуре от точки компенсации переход в ферромагнитную фазу происходит в два этапа. При небольших полях суммарная намагниченность отклоняется от оси легкого намагничивания, при этом намагниченности подрешеток становятся неколлинеарными, хотя угол θ между ними близок к 180⁰. При дальнейшем увеличении поля суммарная намагниченность становится параллельной полю и магнитная структура

переходит в коллинеарную, которая с ростом поля сохраняется до тех пор, пока конкуренция между внешним полем и обменными взаимодействиями не приведет снова к неколлинеарной структуре, которая в свою очередь с ростом поля сохраняется пока подрешетки не схлопнутся. Фазовая диаграмма для этого случая приведена на рис.131в.

Γ ЛАВА 7

Магнитные резонансы и спиновые волны

§ 7.1. Ферромагнитный резонанс

Магнитоупорядоченные среды обладают особыми электродинамическими свойствами благодаря тому, что магнитные моменты атомов связаны сильным обменным взаимодействием . Проявлением таких свойств являются интенсивные магнитные резонансы.

Рассмотрим ферромагнетик в переменном магнитном поле с длинной волны, много большей размера образца, и сначала не будем учитывать потери, магнитную анизотропию и влияния полей размагничивания. Намагниченность и действующее на нее магнитное поле представим в виде

$$\mathbf{M} = \mathbf{M}_0 + \mathbf{m}_{\sim},$$

$$\mathbf{H} = \mathbf{H}_0 + \mathbf{h}_{\sim}.$$
(7.1)

Здесь M_0 и H_0 постоянные, а m_{\sim} и h_{\sim} переменные составляющие намагниченности и поля. Положим, что

$$\mathbf{m}_{\sim} \ll \mathbf{M}_0 \quad , \quad \mathbf{h}_{\sim} \ll \mathbf{H}_0 \ . \tag{7.2}$$

Это условие очень важное, поэтому подчеркнем, что в поле H_0 ферромагнетик находится в насыщенном состоянии, переменное поле слабое и соответственно колебания намагниченности небольшие. Очевидно, что при отсутствии анизотропии в нулевом переменном поле $M_0 || H_0$, т.е.

$$\mathbf{M}_0 \times \mathbf{H}_0 = \mathbf{0}. \tag{7.3}$$

Подставляя выражения (7.1) для **М** и **H** в уравнение движения намагниченности (5.52) и отбрасывая члены второго порядка малости из условия (7.2), а также учитывая (7.3), получим уравнение линейное относительно переменных \mathbf{m}_{\sim} и \mathbf{h}_{\sim}

$$\frac{\partial \mathbf{m}}{\partial t} + \gamma \mathbf{m} \times \mathbf{H}_0 = -\gamma \mathbf{M}_0 \times \mathbf{h} \quad . \tag{7.4}$$

Пусть переменное поле меняется по гармоническому закону

$$\mathbf{h} \exp(i\omega t). \tag{7.5}$$

Тогда в силу линейности уравнения (7.4) **m**. также меняется по тому же закону

$$\mathbf{m} \exp(i\omega t). \tag{7.6}$$

В (7.5) и (7.6) **h** и **m** комплексные амплитуды векторов h_{\sim} и m_{\sim} и для этих амплитуд на основании уравнения (7.4) получим уравнение

$$i\omega\mathbf{m} + \gamma\mathbf{m} \times \mathbf{H}_0 = -\gamma \mathbf{M}_0 \times \mathbf{h}. \tag{7.7}$$

Спроектируем правую и левую стороны уравнения (7.7) на оси координат , при этом будем считать , что ось z совпадает по направлению с **H**₀ :

$$i\omega m_{x} + \gamma H_{0}m_{y} = \gamma M_{0}h_{y},$$

$$-\gamma H_{0}m_{x} + i\omega m_{y} = -\gamma M_{0}h_{x},$$

$$i\omega m_{z} = 0.$$
(7.8)

Решением этой системы являются

$$m_{x} = \frac{\gamma M_{0} \omega_{H}}{\omega_{H}^{2} - \omega^{2}} h_{x} + i \frac{\gamma M_{0} \omega}{\omega_{H}^{2} - \omega^{2}} h_{y},$$

$$m_{y} = -i \frac{\gamma M_{0} \omega}{\omega_{H}^{2} - \omega^{2}} h_{x} + \frac{\gamma M_{0} \omega_{H}}{\omega_{H}^{2} - \omega^{2}} h_{y},$$

$$m_{z} = 0,$$

(7.9)

где

$$\omega_H \equiv \gamma H_0, \tag{7.10}$$

есть частота прецессии вектора намагниченности . Введем обозначения

$$\chi = \frac{\gamma M_0 \omega_H}{\omega_H^2 - \omega^2}; \qquad \chi_a = \frac{\gamma M_0 \omega}{\omega_H^2 - \omega^2}. \tag{7.11}$$

Теперь равенства (7.9) можно записать в тензорной форме

$$\mathbf{m} = \check{\boldsymbol{\chi}} \mathbf{h}, \tag{7.12}$$

где $\dot{\chi}$ - тензор магнитной восприимчивости

$$\dot{\chi} = \begin{vmatrix} \chi & \chi_a & 0 \\ i\chi_a & \chi & 0 \\ 0 & 0 & 0 \end{vmatrix},$$
(7.13)

который является антисимметричным тензором 2-го ранга. Из вида тензора (7.13) следует , что переменное поле , параллельное насыщаемому полю H_0 , т.е. приложенное вдоль оси z, не приводит к появлению переменной намагниченности , а приложенное перпендикулярно оси z, создает переменную намагниченность , имеющую компоненты как параллельную , так и перпендикулярную полю и сдвинутые по фазе на $\pi/2$. Такое свойство называется гиротропией , а среда , обладающая такими свойствами , гиротропной . Гиротропия приводит к эффекту Фарадея , заключающемуся во вращении плоскости поляризации линейно поляризованной волны при ее распространении вдоль или против намагниченности насыщения (подробнее см. в §7.4). Очевидно , что эффект Фарадея имеет место и в парамагнетиках , если они находятся в магнитном поле . Из равенств (7.11) видно , что зависимости χ и χ_a от частоты имеют резонансный характер с частотой резонанса $\omega_{\rm H}$, т.е. резонанс происходит при совпадении частот переменного поля и прецессии намагниченности (рис.132а) . Такой резонанс называется

Рис. 132. Зависимости компонент тензора восприимчивости от частоты (a) и постоянного магнитного поля (б).

ферромагнитным и часто вместо полного названия используется его аббревиатура ΦMP . Так как согласно (7.10) резонансная частота пропорциональна полю H_0 , то экспериментально удобнее при снятии резонансных зависимостей восприимчивости варьировать не ω , а H_0 . В этом случае резонансные зависимости примут вид, показанный на рис.1326.

Циркулярное поле

Рассмотрим теперь взаимодействие ферромагнетика со слабым циркулярным магнитным полем с составляющими

$$h_{+} = h_{x} + ih_{y}$$
, $h_{-} = h_{x} - ih_{y}$. (7.14)

Знаки (+) и (-) соответствуют правому и левому вращению вектора **h**. Переменная составляющая намагниченности также имеет циркулярные составляющие

$$m_{+} = m_{x} + i m_{y}$$
, $m_{-} = m_{x} - i m_{y}$ (7.15)

Если m_x и m_y выразить через h_x и h_y , воспользовавшись (7.9), и затем учесть равенства (7.14), то можно убедиться, что

$$m_{\pm} = \chi_{\pm} h_{\pm}, \tag{7.16}$$

где

$$\chi_{\pm} = \chi \pm \chi_a = \frac{\gamma M_0}{\omega_H \,\mu\,\omega}.\tag{7.17}$$

Из формулы (7.17) видно, что поле h_+ приводит к компоненте m_+ , а h. к m. , т.е. тензор магнитной восприимчивости в случае циркулярного поля имеет только диагональные компоненты . Зависимости χ_+ и χ_- от поля H_0 , следующее из формулы (7.17), приведены на рис.133 .

Рис. 133. Зависимости χ_+ и χ_- от постоянного магнитного поля.

Резонансный характер имеет только зависимость для χ_+ . χ_- остается небольшой по величине и слабо зависит от H_0 . Таким образом только та компонента поля, направление циркуляции которой совпадает с направлением прецессии

намагниченности, может привести к резонансу. Заметим, что круговая поляризация с правым вращением имеет место при $h_y = -ih_x$ и $m_y = -im_x$.

Высокочастотная магнитная проницаемость

Для высокочастотной магнитной проницаемости имеем

$$\dot{\mu} = 1 + 4\pi \dot{\chi} , \qquad (7.18)$$

и, учитывая (7.13), а также (7.11), тензор μ имеет вид

$$\dot{\mu} = \begin{vmatrix} \mu & i\mu_a & 0 \\ -i\mu_a & \mu & 0 \\ 0 & 0 & 1 \end{vmatrix},$$
(7.19)

где

$$\mu = 1 + 4\pi\chi = \frac{\omega_H(\omega_H + \omega_M) - \omega^2}{\omega_H^2 - \omega^2},$$
(7.20)

Рис. 134. Зависимости компонент тензора магнитной проницаемости и $\mu_{\!\!\!+}$ и $\mu_{\!\!\!\perp}$ от частоты .

Рис 135. Зависимость компонент тензора магнитной проницаемости , $\mu_{\text{+}}$ и $\mu_{\text{-}}$ от H_0

$$\mu_a = 4\pi \chi_a = \frac{\omega \omega_M}{\omega_H^2 - \omega^2}.$$

Здесь

$$\omega_{M} = \gamma 4\pi M_{0}. \tag{7.21}$$

При циркулярном поле

$$\mu_{\pm} = 1 + 4\pi \chi_{\pm} = \mu \pm \mu_a = \frac{\omega_H + \omega_M \,\mu\,\omega}{\omega_H \,\mu\,\omega}.$$
(7.22)

Частотные и полевые зависимости магнитных проницаемостей приведены соответственно на рис.134 и 135 (смысл μ_{\perp} будет рассмотрен в § 7.4). Из графиков следует, что μ обращается в нуль на частотной зависимости при $\omega = \omega_{\perp}$ (точка антирезонанса), где

$$\omega_{\perp} = \sqrt{\omega_H (\omega_H + \omega_M)} \tag{7.23}$$

и на полевой зависимости при H = H₁, где

$$H_{1} = \sqrt{\left(\frac{\omega}{\gamma}\right)^{2} + \left(2\pi M_{0}\right)^{2}} - 2\pi M_{0}.$$
 (7.24)

Зависимости μ_+ имеют резонансный характер и $\mu_+=0$ при

$$\omega = \omega_H + \omega_M \tag{7.25}$$

или при

$$H_2 = \frac{\omega}{\gamma} - 4\pi M_0. \tag{7.26}$$

Учет диссипации энергии

Чтобы учесть потери энергии при однородной прецессии намагниченности необходимо обратиться к уравнению Ландау и Лифшица (5.60), в котором присутствует диссипативный член, при этом под H_{ef} будем понимать только внешнее магнитное поле. Для решения задачи можно использовать тот же прием – линеаризацию уравнения. Заменим H_{ef} и M в уравнении (5.60) согласно равенствам (7.1) и тогда при учете условий (7.2) и (7.3) получим следующее лианализованное уравнение относительно переменных h и m, изменяющихся по гармоническому закону согласно (7.5) и (7.6),

$$i\omega \mathbf{m} + \gamma \mathbf{m} \times \mathbf{H}_0 + \frac{i\omega\alpha}{M_0} \mathbf{m} \times \mathbf{M}_0 = -\gamma \mathbf{M}_0 \times \mathbf{h}.$$
 (7.27)

Если учесть тождество (7.10) и через z_0 обозначить единичный вектор вдоль \mathbf{M}_0 , то получим

$$i\omega\mathbf{m} + (\omega_H + i\alpha\omega)\mathbf{m} \times \mathbf{z}_0 = \gamma M_0 \mathbf{h} \times \mathbf{z}_0.$$
(7.28)

Из сравнения уравнений (7.28) и (7.7) видно, что первое получается из второго заменой

$$\omega_H \to \omega_H + i\alpha\omega. \tag{7.29}$$

Поэтому, чтобы получить выражение для восприимчивостей, достаточно в (7.11) произвести замену согласно условию (7.29). Тогда получим

$$\chi = \frac{\gamma M_0(\omega_H + i\alpha\omega)}{\omega_H^2 - (1 + \alpha^2)\omega^2 + 2i\alpha\omega\omega_H},$$
(7.30)

$$\chi_a = \frac{\gamma M_0 \omega}{\omega_H^2 - (1 + \alpha^2)\omega^2 + 2i\alpha\omega\omega_H}.$$
(7.31)

Восприимчивости комплексные и их можно представить в виде

$$\chi = \chi' - i\chi'',$$

$$\chi_a = \chi'_a - i\chi''_a$$
(7.32)

В (7.32) положительные $\chi^{"}$ и $\chi^{a"}_{a}$ соответствуют поглощению энергии.

.

$$\chi' = D^{-1} \gamma M_0 \omega_H \left[\omega_H^2 - (1 - \alpha^2) \omega^2 \right],$$

$$\chi'' = D^{-1} \alpha \gamma M_0 \omega \left[\omega_H^2 + (1 + \alpha^2) \omega^2 \right],$$

$$\chi'_a = D^{-1} \gamma M_0 \omega \left[\omega_H^2 - (1 + \alpha^2) \omega^2 \right],$$

$$\chi''_a = D^{-1} 2 \alpha \omega^2 \gamma M_0 \omega_H,$$

$$D = \left[\omega_H^2 - (1 + \alpha^2) \omega^2 \right]^2 + 4 \alpha^2 \omega^2 \omega_H^2.$$

(7.33)

Графики зависимостей вещественных и мнимых частей компонент тензора восприимчивостей приведены на рис.136. Вещественные части восприимчивостей при резонансе меняют знак, а мнимые, характеризующие потери энергии, проходят через максимум при частоте

$$\omega \cong \frac{\omega_H}{\sqrt{1+\alpha^2}}.$$
(7.34)

При малых потерях отличие от $\omega_{\rm H}$ не велико . При резонансе

$$\chi'_{res} = \frac{\gamma M_0}{2\omega_H}, \qquad \chi''_{res} = \frac{\gamma M_0}{2\alpha\omega_H},$$

$$\chi'_a = 0, \qquad \chi''_{ares} = \frac{\gamma M_0}{2\alpha\omega_H}.$$
(7.35)

Рис. 136. Зависимости вещественных и мнимых частей компонент тензора $\ddot{\chi}$ от H₀. Расчет при M₀ = 160 Гс, $\omega/2\pi = 9,4$ ГГц и $\alpha = 0.025$ [65].

Из (7.35) следует, что при резонансе максимумы $\chi_{res}^{''}$ и $\chi_{ares}^{''}$ тем выше и тем уже, чем меньше α . Чтобы дать представление о характере резонансных зависимостей обычно пользуются данными о так называемой полуширине резонансной линии $\chi_{-}^{''}$, т.е. величинами ширины резонансной линии на половине ее высоты на частотной или полевой зависимостях. Обычно такие полуширины обозначаются как $\Delta \omega$ или ΔH . Если потери не велики и $\Delta \omega \ll \omega_H$, то $\Delta \omega \cong \gamma \Delta H$. Для очень хороших кристаллов иттриевого феррита-граната ($\alpha \sim 5 \cdot 10^{-5}$) $2\Delta H \cong 0.2$ Э при $H_0 = 10^4$ Э, у ферритов-шпинелей величина ΔH порядка нескольких сотен эрстед.

В случае циркулярного поля компоненты тензора восприимчивости равны

$$\chi_{\pm} = \chi \pm \chi_a = \frac{\gamma M_0}{\omega_H \,\mu \,\omega + i\alpha\omega}. \tag{7.36}$$

Учет размагничивающего поля (однородные колебания намагниченности малого эллипсоида)

В предыдущем рассмотрении мы полагали, что магнитные поля как постоянное, так и переменное являются внутренними, т.е. непосредственно взаимодействующими с намагниченностью в рассматриваемой точке ферромагнетика. Эти поля являются суперпозицией внешних полей, под которыми можно понимать поля в том месте, где находится образец, но в его отсутствие, и размагничивающих полей как постоянного, так и переменного, обусловленных конечными размерами образца. В случае постоянного поля задача определения внутреннего поля решается методами магнитостатики. Чтобы использовать магнитостатическое приближение и для переменного поля, считается, что размеры образца много меньше длины электромагнитной волны в веществе и электропроводность вещества мала.

Если образец имеет форму эллипсоида и находится в однородном поле, то размагничивающее поле и намагниченность в нем однородны и связаны симметричным тензором второго ранга N. При совпадении осей координат с осями эллипсоида тензор N становится диагональным с компонентами N_x , N_y , N_z , которые называются коэффициентами размагничивания или размагничивающими факторами, при этом

 $N_x + N_y + N_z = 4\pi$. Таким образом внутреннее постоянное поле H_0 для эллипсоида во внешнем поле H_{e0} равно

$$\mathbf{H}_{\mathbf{0}} = \mathbf{H}_{e0} - N \mathbf{M}_{0}. \tag{7.37}$$

Аналогично внутреннее переменное поле в малом эллипсоиде также однородно и для комплексных амплитуд имеем

$$\mathbf{h} = \mathbf{h}_e - N \mathbf{m} \,. \tag{7.38}$$

Здесь \mathbf{h}_e - внешнее переменное поле . Условия (7.2) и (7.3) по-прежнему считаем справедливыми и тогда после соответствующих замен вместо уравнения (7.27) получим линеализованное уравнение движения

$$i\omega\mathbf{m} + \gamma\mathbf{m} \times \mathbf{H}_{e0} + \gamma \left(\overset{\tau}{N}\mathbf{m}\right) \times \mathbf{M} + \frac{i\alpha\omega}{M_0}\mathbf{m} \times \mathbf{M}_0 = -\gamma \mathbf{M}_0 \times \mathbf{h}_e.$$
(7.39)

В случае свободных и не затухающих колебаний намагниченности, т.е. при $h_e = 0$ и $\alpha = 0$ и внешнем поле, направленном по оси z, уравнение (7.39) упрощается и, проектируя левую и правую его части на оси x и y, можно получить систему из двух однородных уравнений относительно m_x и m_y . Из равенства нулю детерминанта этой системы следует формула для частоты собственных колебаний ω_0

$$\omega_0^2 = \gamma^2 \left\{ \left[H_{e0} + \left(N_{11} - N_{33} \right) M_0 \right] \left[H_{e0} + \left(N_{22} - N_{33} \right) M_0 \right] - N_{12}^2 M_0^2 \right\}.$$
(7.40)

Это решение получено для системы координат, в которой \mathbf{H}_0 и \mathbf{M}_0 направлены по оси *z*. Частота ω_0 является частотой собственных однородных колебаний намагниченности малого эллипсоида.

Если направление внешнего поля совпадает с одной из осей эллипсоида, то тензор N становится диагональным и $N_{11}=N_x$, $N_{22}=N_y$, $N_{33}=N_z$, $N_{12}=0$. При поле H_0 , параллельном оси *z*, формула (7.40) принимает вид

$$\omega_0^2 = \gamma^2 \left[H_{e0} + (N_x - N_z) M_0 \right] \left[H_{e0} + (N_y - N_z) M_0 \right]$$
(7.41)

В случае если эллипсоид не является эллипсоидом вращения вокруг оси *z* , при прецессии вектора намагниченности его конец описывает не окружность , а эллипс , так как величина внутреннего магнитного поля зависит от ориентации вектора намагниченности , т.е. имеет место эллиптическая поляризация

- Рис. 137. Предельные случаи эллипсоида, Магнитное поле, направленно вдоль оси z.
 - а) Бесконечно тонкая пластинка ; $N_x = N_y = 0$; $N_z = 4\pi$; $\omega_0 = \gamma (H_{eo} 4\pi M_0)$.
 - б) Бесконечный тонкий цилиндр ; $N_x = N_y = 2\pi$, $N_z = 0$, $\omega_0 = \gamma (H_{e_0} + 2\pi M_0)$. в) Сфера ; $N_x = N_y = N_z = 4/3 \pi$, $\omega_0 = \gamma H_{e_0}$.

На рис. 137 приведены предельные случаи эллипсоида, соответствующие им размагничивающие факторы и резонансные частоты. Если образец – сфера, размагничивающий фактор величина скалярная и из формулы (7.41) следует, что $\omega_0 = \gamma H_{e0}$, т.е. размагничивающее поле не влияет на резонансную частоту. Это объясняется тем, что в случае сферы размагничивающее поле при любой ориентации намагниченности в том числе и в процессе ее прецессии направлено всегда против нее и поэтому влияния на движение намагниченности не оказывает.

В случае вынужденных однородных колебаний намагниченности малого эллипсоида можно ввести понятие его внешней восприимчивости χ^{τ_e} , смысл которой следует из формулы

$$\mathbf{m} = \chi^{e} \mathbf{h}_{e} \,. \tag{7.42}$$

Тензор χ^{τ_e} связывает комплексные амплитуды переменной намагниченности и внешнего магнитного поля. Его компоненты можно найти, решая уравнение (7.37).

Влияние магнитной анизотропии

В предыдущем рассмотрении считалось . что ферромагнетик изотропный . Чтобы решение задачи об колебаниях намагниченности соответствовало реальной ситуации , необходимо учесть влияние магнитной анизотропии . Рассмотрим случай одноосной анизотропии и выделенную ось обозначим как z' в системе координат x'y'z'. Анизотропию в базисной плоскости учитывать не будем . Пусть вектор намагниченности M_0 направлен по оси z в системе координат xyz, которая повернута относительно штрихованной системы на угол θ_0 вокруг оси x' (рис.138). Такое упрощение задачи никак не отразится на общности вывода, поскольку анизотропией в базисной плоскости пренебрегли

Рис. 138. Взаимная ориентация осей систем координат x, y, z и x', y', z', а также М и \mathbf{H}_{c0} .

При учете только первой константы анизотропии для энергии анизотропии имеем

$$E_a = k \sin^2 \theta_0 = k \left(1 - \frac{M_{z'}^2}{M_0^2} \right).$$
(7.43)

Тогда компонента поля анизотропии вдоль оси z' равна

$$H_{az'} = -\frac{\partial E_a}{\partial M_{z'}} = \frac{2k}{M_0^2} M_{z'}.$$
(7.44)

Очевидно, в штрихованной системе координат все другие компоненты поля анизотропии равны нулю. Для того, чтобы использовать результаты, которые уже получены для изотропного ферромагнетика, надо перейти к нештрихованной системе координат, в

которой решение уравнения движения нам известно . Косинусы углов между старыми и новыми осями координат приведены в табл.

Таблица 7.1

Косинусы углов между осями координат хуг и хуг'

	<i>x′</i>	<i>y′</i>	<i>z'</i>
x	0	0	0
У	0	$\cos \theta_0$	$-\sin\theta_0$
Ζ	0	$\sin \theta_0$	$\cos \theta_0$

Воспользовавшись правилом преобразования компонент векторов при повороте системы координат¹, получим

$$H_{ax} = 0,$$

$$H_{ay} = -\frac{2k}{M_0^2} M_{z'} \sin \theta_0 = -\frac{2k}{M_0^2} \left(M_z \cos \theta_0 - M_y \sin \theta_0 \right) \sin \theta_0,$$

$$H_{az} = \frac{2k}{M_0^2} M_{z'} \cos \theta_0 = \frac{2k}{M_0^2} \left(M_z \cos \theta_0 - M_y \sin \theta_0 \right) \cos \theta_0.$$

(7.45)

Видно, что каждая из проекций \mathbf{H}_a линейно зависит от проекций намагниченности, поэтому связь между \mathbf{H}_a и \mathbf{M}_0 можно записать в тензорном виде

$$\mathbf{H}_{a} = -\tilde{N}^{a}\mathbf{M}_{0},\tag{7.46}$$

где N - симметричный тензор 2-го ранга , который , как следует из формулы (7.45) , имеет следующие компоненты :

$$N_{11} = N_{12} = N_{13} = 0; \quad N_{22} = -\frac{2k}{M_0^2} \sin^2 \theta_0; \quad N_{33} = -\frac{2k}{M_0^2} \cos^2 \theta_0;$$
$$N_{23} = N_{32} = \frac{2k}{M_0^2} \sin \theta_0 \cos \theta_0. \tag{7.47}$$

Запись (7.46) справедлива и при учете более высоких членов разложения (4.1) при условии малых колебаний намагниченности. Поскольку и поле размагничивания и поле анизотропии связаны с M_0 тензорами 2-го ранга, эти тензоры можно сложить и тогда для внутреннего поля справедлива формула

$$\mathbf{H}_{0} = \mathbf{H}_{e0} - \left(\overset{\iota}{N}^{a} + \overset{\iota}{N} \right) \mathbf{M}_{0}.$$
(7.48)

¹ Формула для преобразования компонент вектора **р** при повороте системы координат следующая $p_i = a_{ij}p_{i'}$, где $a_{ij'}$ - косинус угла между *i* - ой и *j'*- ой осями координат.

Для сферы в формулу (7.48) входит только N^{a} и тогда, пользуясь формулой (7.40), считая $H_{a} = \frac{2k}{M_{0}}$ и учитывая (7.48), для резонансной частоты однородных колебаний намагниченности получим

$$\omega_0^2 = \gamma^2 \left(H_{e0} + H_a \cos^2 \theta_0 \right) \left[H_{e0} + H_a \left(\cos^2 \theta_0 - \sin^2 \theta_0 \right) \right] .$$
(7.49)

Принимая во внимание , что $H_{e0z} = H_{e0} \cos(\theta_H - \theta_0)$, рассмотрим крайние случаи направления внешнего поля $\theta_H = 0$ и $\theta_H = \pi/2$.

При $\kappa > 0$ (ось легкого намагничивания),

если $\theta_{\rm H} = 0$, то и $\theta_0 = 0$ и

$$\omega_0 = \gamma (H_{e0} + H_a), \tag{7.50}$$

если $\theta_{\rm H} = \pi/2$ и $H_{e0} > H_a$, т.е. $\theta_0 = \pi/2$

$$\omega_0^2 = \gamma^2 H_{e0} (H_{e0} - H_a). \tag{7.51}$$

При $\kappa < 0$ (плоскость легкого намагничивания) формулы (7.50) и (7.51) остаются справедливыми, необходимо только поменять знак перед H_a и учесть, что (7.50) применима только при $H_{e0} > |H_a|$, на формулу (7.51) такого ограничения нет. Рассмотренные случаи полевых зависимостей резонансной частоты приведены на рис.139 в относительных единицах

Рис.139. Зависимость собственной частоты однородных колебаний намагниченности сферы из одноосного ферромагнетика. Пунктиром показаны области, где формулы (7.50) и (7.51) не справедливы из-за отсутствия полного насыщения, т.е. **М**₀ не параллельно **H**_{e0} во всем образце или в его части из-за доменной структуры.

В случае многоосных кристаллов расчеты собственных колебаний намагниченности более

громоздкий. Во всех случаях экспериментальное определение частоты ферромагнитного резонанса или угловых зависимостей резонансного поля — наиболее точный и распространенный метод измерения констант магнитной анизотропии.

Ферромагнитный резонанс наблюдается и в образцах разбитых на домены при этом даже при отсутствии внешнего поля . Роль внешнего поля в таком случае играет размагничивающее поле, создаваемое нормальной к доменной стенке составляющей намагниченности. Такой резонанс называется естественным ферромагнитным

резонансом . Линии поглощения при наличии доменной структуры всегда широкие . Пример проявления естественного ферромагнитного резонанса на частотных зависимостях μ' и μ'' представлен на рис.123.

§ 7.2. Ферримагнитный резонанс

Магнитный резонанс в ферримагнетиках существенно отличается от резонанса в ферромагнетиках, так как наличие по крайней мере двух сильно связанных магнитных подрешеток приводит к увеличению числа ветвей магнитных колебаний. Рассмотрим ферримагнетик с двумя коллинеарными магнитными подрешетками A и B, имеющими намагниченности M_A и M_B . Будем учитывать только межподрешеточное взаимодействие, а магнитной анизотропией и полями размагничивания пренебрежем. Пусть приложены внешние поля постоянное H_0 и переменное h_{\sim} , меняющееся по гармоническому закону, при этом $H_0 >> h_{\sim}$. В этом случае намагниченности подрешеток также будут иметь постоянные M_{A0} и M_{B0} и переменные m_A и m_B составляющие. Эффективные поля, действующие на подрешетки, запишутся как

$$\mathbf{H}_{ef}^{A} = \mathbf{H}_{0} + \mathbf{h}_{\sim} \mathbf{W} (\mathbf{M}_{B0} + \mathbf{m}_{B}),$$

$$\mathbf{H}_{ef}^{B} = \mathbf{H}_{0} + \mathbf{h}_{\sim} \mathbf{W} (\mathbf{M}_{A0} + \mathbf{m}_{B}).$$
(7.52)

Здесь w > 0. Если пренебречь затуханием , то уравнения Ландау и Лифшица для подрешеток имеют вид

$$\frac{d\mathbf{M}_{A}}{dt} = -\gamma_{A} \left[\mathbf{M}_{A} \times \mathbf{H}_{ef}^{A} \right],$$

$$\frac{d\mathbf{M}_{B}}{dt} = -\gamma_{B} \left[\mathbf{M}_{B} \times \mathbf{H}_{ef}^{B} \right].$$
(7.53)

 $\gamma_{\rm A}$ и $\gamma_{\rm B}$ - гиромагнитные отношения для подрешеток. Пусть \mathbf{H}_0 направлено по оси z, тогда и $\mathbf{M}_{\rm A0}$ и $\mathbf{M}_{\rm B0}$ направлены также вдоль этой оси. Подставим выражения (7.52) для эффективных полей в уравнения (7.53), отбросим члены второго порядка малости и, считая, что $\mathbf{H}_0 \times \mathbf{M}_{i0} = 0$, получим следующие два уравнения :

$$i\omega\mathbf{m}_{A} + \gamma_{A}\mathbf{m}_{A} \times (\mathbf{H}_{0} - w\mathbf{M}_{B0}) + \gamma_{A}\mathbf{M}_{A0} \times (\mathbf{h} - w\mathbf{m}_{B}) = 0,$$

$$i\omega\mathbf{m}_{B} + \gamma_{A}\mathbf{m}_{B} \times (\mathbf{H}_{0} - w\mathbf{M}_{A0}) + \gamma_{B}\mathbf{M}_{B0} \times (\mathbf{h} - w\mathbf{m}_{A}) = 0.$$
(7.54)

Если спроектировать уравнения (7.54) на ось x, затем умножить на $(\pm i)$ и сложить с соответствующими проекциями на ось y, то получится следующая система двух уравнений для циркулярных переменных $h_{\pm} = h_x \pm i h_y$ и $m_{A,B\pm} = m_{A,Bx} \pm i m_{A,By}$

$$[\pm \omega - \gamma_{A} (H_{0} + wM_{B0})] m_{A\pm} - \gamma_{A} wM_{A0} m_{B\pm} = -\gamma_{A} M_{A0} h_{\pm},$$

$$\gamma_{B} wM_{B0} m_{A\pm} + [\pm \omega - \gamma_{B} (H_{0} - wM_{A0})] m_{B\pm} = \gamma_{B} M_{B0} h_{\pm}.$$

$$(7.55)$$

Определим теперь собственные частоты колебаний в отсутствие внешнего переменного поля. В этом случае уравнения (7.55) станут однородными относительно переменных намагниченностей и нетривиальное решение для собственных частот найдем, если приравняем нулю определитель из коэффициентов перед $m_{A\pm}$ и $m_{B\pm}$ в левой части уравнений (7.55). Таким образом получим

$$\omega^{2} \pm \omega \left[w (\gamma_{B} M_{A0} - \gamma_{A} M_{B0}) - (\gamma_{A} + \gamma_{B}) H_{0} \right] - \gamma_{A} \gamma_{B} \left[w (M_{A0} - M_{B0}) - H_{0} \right] H_{0} = 0.$$
(7.56)

Знак + соответствует правой, а - левой циркуляции. Если во втором случае заменить ω на – ω , то обе частоты являются корнями одного и того же уравнения. Ограничимся областью слабых полей, таких, что

$$H_0 \pi \pi H_1 \equiv w (M_{A0} - M_{B0}). \tag{7.57}$$

В этом случае для частоты правой циркуляции ω₊ получим

$$\omega_{+} \approx \gamma_{ef}^{+} H_{0}, \qquad (7.58)$$

где

$$\gamma_{ef}^{+} = \frac{M_{A0} - M_{B0}}{\frac{M_{A0}}{\gamma_{A}} - \frac{M_{B0}}{\gamma_{B}}}.$$
(7.59)

Видно , что $\gamma_{e\!f}^+$ играет роль эффективного гиромагнитного отношения .

Для частоты левой циркуляции шаль также в области слабых полей имеем

$$\omega_{-} \approx \omega_{E} - \gamma_{ef}^{-} H_{0}, \qquad (7.60)$$

где

$$\omega_E = w \left(\gamma_B M_{A0} - \gamma_A M_{B0} \right) \tag{7.61}$$

И

$$\gamma_{ef}^{-} = \frac{\frac{\gamma_B}{\gamma_A} M_{A0} - \frac{\gamma_A}{\gamma_B} M_{B0}}{\frac{M_{A0}}{\gamma_A} - \frac{M_{B0}}{\gamma_B}}.$$
(7.62)

Из формулы (7.58) следует, что собственная частота правой циркуляции или правополяризованного колебания также как и в случае ферромагнитного резонанса прямо пропорциональна полю с заменой γ на эффективное гиромагнитное отношение γ_{ef}^+ . Это ферромагнитные колебания, частота которых лежит в области СВЧ. Частота левой циркуляции или левополяризованных колебаний определяется эффективным обменным полем и лежит в далекой инфракрасной области. Этот

новый вид колебаний называется высокочастотным или обменным . Если подставить значения собственных частот в уравнение (7.55) при $h_{\pm} = 0$ и отбросить за малостью члены с H_0 , то получим для отношений амплитуд намагниченностей следующие равенства

$$\frac{m_{A+}}{m_{B+}} \cong -\frac{M_{A0}}{M_{B0}} \tag{7,63}$$

$$\frac{m_{A-}}{m_{B-}} \cong -\frac{\gamma_A}{\gamma_B}.$$
(7.64)

Равенство (7.63) означает, что во время правой прецессии намагниченности подрешеток все время остаются антипараллельными . Константа обменного взаимодействия не входит в выражение для частоты и таким образом работы против обменной силы не совершается . При левой прецессии антипараллельность намагниченностей подрешеток нарушается и частота зависит от обменного взаимодействия . Оба типа прецессии схематически представлены на рис.140

Рис.140. Правая (а) и левая (б) прецессии намагниченностей подрешеток ферримагнетика при соответственно низкочастотных и высокочастотных колебаниях.

Из формул (7.58–59) видно, что в точке компенсации намагниченностей подрешеток γ_{ef}^+ обращается в нуль, а в точке компенсации механических моментов в бесконечность и соответственно ω_+ стремится к нулю в первом случае и к бесконечности во втором случае. При обменном резонансе согласно формулам (7.60) и (7.61) ω_- при подходе к точке компенсации уменьшается. Хотя условие (7,57) перестает выполняться при подходе к точке компенсации, предсказываемая тенденция изменения ω_+ и ω_- наблюдается экспериментально.

Для нахождения магнитной восприимчивости надо решить систему уравнений (7.55) с верхним знаком. Если это проделать, то получим $m_{+} = m_{A^{+}} + m_{B^{+}} = \chi_{+}h_{-}$, где

$$\chi_{+} = \frac{\gamma_{ef} \left(M_{A0} - M_{B0} \right)}{\omega_{+} - \omega}.$$
(7.65)

Формула (7.65) является полным аналогом формулы (7.17) для восприимчивости ферромагнетика с заменой γ на γ_{ef} и введением результирующей намагниченности.

Если в исходные уравнения (7.54) ввести члены, учитывающие затухание, то можно получить формулу для восприимчивости с учетом потерь

$$\chi_{+} = \frac{\gamma_{ef} \left(M_{A0} - M_{B0} \right)}{\omega_{+} - \omega + i\alpha_{ef}\omega_{+}},\tag{7.66}$$

где

$$\alpha_{ef} = \frac{\alpha_A \frac{M_{A0}}{\gamma_A} + \alpha_B \frac{M_{B0}}{\gamma_B}}{\frac{M_{A0}}{\gamma_A} - \frac{M_{B0}}{\gamma_B}},$$
(7.67)

где α_A и α_B - параметры затухания магнитных подрешеток . Для ширины резонансной кривой ΔH из (7.66), учитывая (7.59) и (7.67), получим

$$\Delta H = 2\omega \frac{\alpha_A \frac{M_{A0}}{\gamma_A} + \alpha_B \frac{M_{B0}}{\gamma_B}}{M_{A0} - M_{B0}}.$$
(7.68)

Из формулы (7.68) видно, что ширина резонансной кривой увеличивается при приближении к точке компенсации. Если приложено произвольное переменное поле, то его всегда можно разложить на поля с левой и правой круговой поляризацией. Поскольку частоты собственных колебаний ω₊ и ω₋ намного отличаются друг от друга, одновременно эти колебания не возбуждаются.

При учете кристаллографической анизотропии для частот собственных ферромагнитных колебаний и компонент тензора восприимчивости получаются такие же выражения, как и для ферромагнетика с той разницей, что входят эффекривные константы анизотропии, которые можно представить как суммы констант анизотропии для подрешеток. В учете влияния полей размагничивания ферримагнетик ничем на отличается от ферромагнетика.

При ферромагнитном типе колебаний независимо от числа магнитных подрешеток и от того коллинеарны они или нет всегда существует только одна собственная мода, т.е. весь "пучок" намагниченностей подрешеток прецессирует как единое целое. Что касается обменных колебаний, то их n - 1, где n - число подрешеток.

§ 7.3. Антиферромагнитный резонанс

В отличие от ферро- и ферримагнетиков у антиферромагнетиков энергия анизотропии существенно влияет на вид мод колебаний . Что касается размагничивающего поля, то его влияние мало, так как спонтанная намагниченность равна нулю, а восприимчивость мала. Рассмотрим магнитные колебания в одноосных антиферромагнетиках двух видов - с анизотропией типа легкая ось и легкая плоскость.

Антиферромагнетик типа легкая ось.

Сначала рассмотрим случай, когда поля внешнее постоянное \mathbf{H}_0 и переменное **h** направлены соответственно по антиферромагнитной оси и перпендикулярно ей (продольный антиферромагнитный резонанс). Пусть $\mathbf{H}_0 < \mathbf{H}_{on.}$ поля опрокидывания магнитных подрешеток и $\mathbf{H}_0 >> \mathbf{h}$. Для расчетов можно воспользоваться уравнением (7.55) для ферримагнетика, считая, что $\gamma_{A} = \gamma_{B} = \gamma$, $\mathbf{M}_{A} = \mathbf{M}_{B} = \mathbf{M}_{0}$, введя в рассмотрение поле анизотропии $H_a = \frac{2\kappa}{M_0}$ и обменное поле $H_E = wM_0$. Проделав

это, получим

$$\begin{bmatrix} \pm \omega - \gamma (H_0 + H_E + H_a) \end{bmatrix} m_{A\pm} - \gamma H_E m_{B\pm} = -\gamma M_0 h_{\pm},$$

$$\gamma H_E m_{A\pm} + \begin{bmatrix} \pm \omega - \gamma (H_0 - H_E - H_a) \end{bmatrix} m_{B\pm} = \gamma M_0 h_{\pm}.$$
(7.69)

Также как и в случае ферромагнетика рассмотрим собственные колебания , т.е. положим $h_{\pm} = 0$. Тогда из равенства нулю детерминанта этой системы уравнений получим

$$\omega_{\pm} = \gamma \left[\sqrt{H_a (2H_E + H_a)} \pm H_0 \right]$$
(7.71)

и при H₀ = 0

$$\omega_0 = \gamma \sqrt{H_a (2H_E + H_a)}. \tag{7.72}$$

Таким образом при $H_0 = 0$ частоты собственных право- и левополяризованных колебаний совпадают. Так как обычно $H_E >> H_0$, то $\omega_0 \cong \gamma \sqrt{2H_a H_E}$. Полевые зависимости ω_{\pm} приведены на рис.141. Как правило, частота ω_0 велика, например, для $Cr_2O_3 \omega_0 \cong 165 \Gamma\Gamma$ ц и линейные зависимости ω_{\pm} от H_0 хорошо выполняются.

Определим теперь, что из себя представляют колебания ω_{\pm} . Подстановка частоты ω_{+} в детерминант системы (7.69) с нижними знаками при $h_{\pm} = 0$ не обращает его в нуль, следовательно, при $\omega = \omega_{+}$ система (7.69) с нижними знаками имеет только тривиальное решение $m_{A.=} = m_{Ax} - i m_{Ay} = 0$ и $m_{B.=} = m_{Bx} - i m_{By} = 0$. отсюда следует, что $m_{Ay} = -im_{Ax}$ и $m_{By} = -im_{Bx}$, следовательно, M_A и M_B прецессируют с правым вращением. Аналогичным образом можно показать, что колебания с частотой ω_{-}

Рис.141. Зависимость частот собственных колебаний с правой ω₊ и левой ω. прецессией векторов намагниченностей подрешеток для антиферромагнетика типа легкая ось .

есть круговая прецессия с левым вращением . Отношения амплитуд колебаний можно найти , если подставить выражение (7.71) для частот ω_{\pm} в любое из уравнений (7.69) при $h_{\pm} = 0$. Проделав это получим

$$\frac{m_{B\pm}}{m_{A\pm}} = -\frac{H_E + H_a, \,\mu \sqrt{H_a(2H_E + H_a)} + H_0(1\,\mu\,1)}{H_E} \approx -\left(1\,\mu \frac{\sqrt{H_a(2H_E + H_a)}}{H_E}\right).$$
(7.73)

Из формулы (7.73) следует, что отношение амплитуд практически не зависит от H_0 и мало отличается от -1. Характер прецессии иллюстрирует рис.142.

Чтобы найти магнитную восприимчивость, надо решить систему уравнений (7.69), найти $\mathbf{m}_{\pm} = \mathbf{m}_{A\pm} + \mathbf{m}_{B\pm}$ и затем получить формулу для магнитной восприимчивости

$$\chi_{\pm} \simeq \frac{2\gamma^2 H_a M_0}{(\omega_{\pm} - \omega)(\omega_{\pm} + \omega)},\tag{7.74}$$

где ω_± определяется формулой (7.71).

Можно показать , что в случае постоянного поля H_0 , направленного перпендикулярно оси антиферромагнетизма , имеются два вида резонансных колебаний : одно с частотой ω_1 , возбуждаемое переменным полем , перпендикулярным H_0 , и второе с частотой ω_2 , возбуждаемое переменным полем , параллельным H_0 . Зависимости частот этих колебаний от H_0 приведены на рис.143.

Антиферромагнетик типа легкая плоскость.

Рассмотрим случай, когда поле \mathbf{H}_0 лежит в базисной плоскости, т.е. в той же плоскости, что и вектора намагниченностей подрешеток. Если пренебречь анизотропией в базисной плоскости, то под действием поля \mathbf{H}_0 намагниченности подрешеток ориентируются перпендикулярно полю с небольшим углом скоса ϕ так,

Рис. 142. Правая (а) и левая (б) прецессии намагниченностей подрешеток M_A и M_B одноосного антиферромагнетика при антиферромагнитном резонансе в поле H_0 , параллельном антиферромагнитной оси .

Рис. 143. зависимость частоты антиферромагнитого рость тибор у антиферромагнетика типа. легкая плоскость сот Н₀ при направлении этого поля перпендикулярно антиферромагнитной оси .
 ω₁ – переменное поле перпендикулярно H₀.
 ω₂ – переменное поле параллельно H₀.

как это показано на рис. 144. Равновесный угол φ определяется из условия взаимной компенсации вращающих моментов $\mathbf{M}_{0i} \times \mathbf{H}_E = M_{0i} H_E \sin 2\varphi$ и $\mathbf{M}_{0i} \times \mathbf{H}_0 = M_{0i} H_0 \cos \varphi$, приложенных соответственно со стороны обменного и внешнего полей. Отсюда

$$\sin\varphi = \frac{H_0}{2H_E} \tag{7.75}$$

Рис. 144. Ориентация векторов намагниченностей подрешеток и постоянного поля **H**₀ в случае антиферромагнетика типа легкая плоскость. а) **H**₀ перпендикулярно оси *z*. б) **H**₀ параллельно оси *z*.

при $H_0 < 2H_E$. В этом случае возможно возбуждение двух колебаний с частотами

$$\omega_{\perp 1} = \gamma H_0 \sqrt{1 + \frac{|H_a|}{2H_E}}, \qquad (7.76)$$

$$\omega_{\perp 2} = \gamma \sqrt{2H_E |H_a| - \frac{|H_a|}{2H_E} H_0^2}.$$
 (7.77)

Как движутся вектора намагниченностей подрешеток при этих колебаниях показано на рис.145

Рис.145. Прецессия векторов намагниченностей подрешеток антиферромагнетика Типа легкая плоскость в постоянном поле, лежащем в плоскости легкого намагничивания . а – колебание с частотой $\omega_{\perp 1}$, б – колебание с частотой $\omega_{\perp 2}$. Цифры показывают последовательность изменения направления намагниченностей подрешеток и суммарной намагниченности.

233

При колебаниях первого типа с частотой $\omega_{\perp 1}$ суммарная намагниченность **m** колеблется, имея правую поляризацию. Намагниченности колеблются так, что их проекции на плоскость *xz* совершают когерентные круговые вращения с радиусами кругов, равными половине радиуса круга вращения суммарной намагниченности. *y* – компоненты намагниченностей подрешеток изменяются в противофазе и так, что их

переменные составляющие в $\frac{2H_E}{H_0}$ раз больше переменных составляющих проекций

на оси x и z. Такой тип колебаний возбуждается переменным полем, поперечным относительно поля \mathbf{H}_0 , и его можно рассматривать как колебания суммарной намагниченности, вызванной внешним магнитным полем.

При втором типе колебаний с частотой $\omega_{\perp 2}$ вектора намагниченностей колеблются так, что их проекции на плоскость *уг* описывают одинаковые вытянутые эллипсы, но направления вращения противоположные - *у* – компоненты изменяются в фазе. а *z* – компоненты в противофазе и таким образом суммарная намагниченность имеет только *у* – компоненту. Такой тип колебаний возбуждается продольным переменным полем, т.е. полем, параллельным **H**₀.

При правом типе колебаний угол между векторами M_A и M_B все время остается постоянным и поэтому частота $\omega_{\perp 1}$ определяется величиной постоянного поля. При втором типе колебаний частота $\omega_{\perp 2}$ практически зависит только от обменного поля и поля анизотропии. Полевые зависимости $\omega_{\perp 1}$ и $\omega_{\perp 2}$ приведены на рис.146

Рис. 146. Зависимости частот $\omega_{\pm 1}$, $\omega_{\pm 2}$ и $\omega_{||}$ собственных колебаний антиферромагнетика типа легкая плоскость от постоянного поля H_0 .

Характерным является, во-первых, так называемая безщелевая зависимость $\omega_{1\perp}$, т.е. возможность возбуждения резонансных колебаний даже в слабом постоянном поле и на низких частотах. Анизотропия в базисной плоскости приводит к появлению щели, величина которой зависит от азимутального угла. Во-вторых, имеет место вырождение при $H_0 \cong \sqrt{2H_E |H_a|}$, которое снимается при выходе \mathbf{H}_0 из легкой плоскости.

В случае, если поле перпендикулярно базисной плоскости, т.е. H_0 параллельно оси z (рис.144б), равновесный угол θ поворота намагниченностей подрешеток также определяется из условия взаимной компенсации вращающих моментов поля H_0 , с одной стороны, и, с другой стороны, полей H_E и H_a .

$$\cos\theta = \frac{H_0}{2H_E + \left|H_a\right|}.\tag{7.78}$$

Можно показать, что в этом случае при $H_0 < (2H_E + |H_a|)$, т.е. в полях, меньших поля схлопывания подрешеток, частота собственных колебаний $\omega_{||}$ определяется формулой

$$\omega_{||} = \gamma \sqrt{2(H_E |H_a| + H_0^2)}.$$
(7.79)

Эта зависимость представлена на рис.146.

Слабые ферромагнетики

Рассмотрим только антиферромагнетик типа легкая плоскость , допускающий слабый ферромагнетизм , обусловленный наличием в разложении термодинамического потенциала члена вида $D[S_1 \times S_2]$. Пусть для конкретности внешнее поле H_0 направлено по оси y. В этом случае магнитная структура соответствует , представленной на рис.144а , при этом результирующая намагниченность **m** равна сумме намагниченностей , индуцированных полем Дзялошинского H_D и внешним полем H_0 , и вместо формулы (7.75) получим

$$\sin\varphi = \frac{H_0 + H_D}{2H_F}.$$
(7.80)

Приведем результаты расчета частот собственных колебаний

$$\omega_1 = \gamma \sqrt{H_0 (H_0 + H_D)}, \qquad (7,81)$$

$$\omega_2 = \gamma \sqrt{2H_E |H_a| + H_D (H_0 + H_D)}.$$
(7.82)

Характер колебаний качественно совпадает с тем, что было получено для легкоплоскостного антиферромагнетика.

§ 7.4. Спиновые волны

В магнитоупорядоченной среде магнитные моменты атомов совершают беспорядочные колебания, интенсивность которых зависит от температуры. Измеряемой величиной намагниченности является усредненная величина суммы этих моментов. Такие колебания можно представить как суперпозицию гармонических волн, понятие о которых ввел Блох в 1930 г., назвавший такие волны спиновыми. В спиновой волне возбуждение от одного атома к соседнему передается благодаря сильному обменному взаимодействию между этими атомами подобно тому, как в акустической волне отклонение от положения равновесия одного атома предается соседнему благодаря упругим силам. При феноменологическом рассмотрении спиновых волн считается, что величина намагниченности при абсолютном нуле постоянна и в идеальном кристалле однородна. При повышении температуры возбуждаются тепловые колебания намагниченности, которая теперь зависит от координат и времени . Такие колебания намагниченности являются тепловыми спиновыми волнами, колебания некогерентные и находятся в равновесии с

колебаниями решетки (фононами) и другими возбуждениями .Они имеют широкое распределение по частотам и волновым числам .

Под действием достаточно сильного переменного поля в магнитной системе могут возбуждаться когерентные спиновые волны . Случай колебаний намагниченности малого эллипсоида , возбуждаемых однородным в пределах образца полем , при которых магнитные моменты всех атомов прецессируют синхронно и в любой момент времени намагниченность остается однородной , рассмотрен в предыдущих параграфах этой главы .

7.4.1. Электродинамика плоских волн

Приведем результаты электродинамического рассмотрения однородных плоских электромагнитных волн в бесконечном ферро- или ферримагнетике с малой электропроводностью, полученные при решении уравнений Максвелла с использованием так называемых материальных соотношений, характеризующих свойства вещества и связывающих **В** и **D** с **E** и **H**. Под однородной волной будем понимать волну, в которой составляющие поля зависят только от координаты в направлении распространения. Ограничимся не очень короткими длинами волн

с $k{<}10^4$ см $^{-1}$, но при условии $k{>>}k_0{=}\omega/c$. В таком интервале волновых чисел длина волны по сравнению с межатомными расстояниями велика, следовательно, угол между магнитными моментами соседних атомов мал и поэтому можно не учитывать энергию неоднородного обмена. Кроме того, так как $k{>>}k_0$, можно пользоваться уравнениями Максвелла в так называемом магнитостатическом приближении , т.е. не учитывать члены , зависящие от времени .

В приводимых результатах считается , что магнитная анизотропия среды связана только с направлением постоянного поля \mathbf{H}_0 , тензор диэлектрической проницаемости на всех частотах считается скалярной величиной , потери не учитываются .

Продольное намагничивание. При распространении волны вдоль направления поля \mathbf{H}_0 (θ_{κ} =0), которое намагничивает среду до насыщения, структура поля в волне не меняется только у двух волн, из которых одна имеет правую, а другая левую циркуляцию. Такие волны принято называть нормальными и их волновые числа даются формулами

$$k_{\pm} = k_0 \sqrt{\varepsilon(\mu \pm \mu_a)}. \tag{7.83}$$

Верхний знак соответствует волне с правой, а нижний с левой циркуляциями. Таким образом постоянные распространения (данном случае k₊ и k₋) волн с круговой поляризацией с правым и левым вращением разные, такое явление относится к невзаимным. Дисперсионные зависимости для этих волн приведены на рис.147

Рис. 147. Дисперсионные зависимости электромагнитных плоских волн в неограниченной намагниченной до насыщения среде при θ_k = 0 (сплошные линии) и θ_k = 90⁰ (пунктир).

Для волны с левой прецессией зависимость $\omega(k)$ близка к линейной, которая соответствует немагнитной среде, т.е. $\omega = \frac{ck}{\sqrt{\varepsilon}}$. У волны с правой прецессией имеются две ветви : одна начинается при $\omega_+ = \omega_H + \omega_M$ и с ростом k стремится к зависимости, соответствующей волне с левой прецессией, вторая начинается с нуля и стремится к ω_H , при этом фазовая скорость $v_{ph} = \frac{\omega}{k}$ и групповая $v_{gr} = \frac{\partial \omega}{\partial k}$ скорости становятся очень малыми. В интервале частот от ω_H до ($\omega_H + \omega_M$), в котором ($\mu + \mu_a$) < 0, если нет диссипации, то волны с правой прецессией не существует. Процесс диссипации приводит к тому, что такая волна может существовать, но сильно затухает.

В рассматриваемом случае любая волна может быть представлена как суперпозиция нормальных волн . Так как последние имеют разные волновые числа при одной и той же частоте , то по мере прохождения волны будет меняться ее структура . Так линейно поляризованную волну можно разложить на две нормальные волны и пройдя путь l волна станет эллиптически поляризованной с большой осью эллипса , составляющей угол $\mathcal{G} = \frac{1}{2}(k_+ - k_-)l$ с направлением линейной поляризации . Направление поворота плоскости поляризации не зависит от направления распространения волны , но меняется на обратное при изменении направления намагниченности на обратное . Такое явление - вращение плоскости поляризации в продольно намагниченной гиротропной среде называется эффектом Фарадея .

Поперечное намагничивание

При поперечном намагничивании волновой вектор перпендикулярен намагниченности среды ($\theta_{\kappa}=90^{0}$). В этом случае нормальные волны имеют волновые числа

$$k_1 = k_0 \sqrt{\varepsilon \mu_\perp}, \qquad (7.84)$$

$$k_2 = k_0 \sqrt{\varepsilon \mu_{II}}, \qquad (7.85)$$

где

$$\mu_{\perp} = \mu - \frac{\mu_a}{\mu} = \frac{(\omega_H + \omega_M)^2 - \omega^2}{\omega_H(\omega_H + \omega_M) - \omega^2},$$
(7.86)

а под μ_{\parallel} подразумевается магнитная проницаемость в направлении параллельном \mathbf{H}_0 . Будем считать, что среда намагничена до насыщения и поэтому $\mu_{\parallel}=1$. Первая волна с волновым числом \mathbf{k}_1 называется необыкновенной. В ней электрическое поле в волне параллельно \mathbf{M}_0 , а магнитное поле эллиптически поляризовано в плоскости, перпендикулярной \mathbf{M}_0 . Направление всех векторов в случае необыкновенной волны иллюстрирует рис.148а, на котором \mathbf{M}_0 направлено по оси *z*, а **k** по оси *y*.

Вторая волна с волновым числом k_2 называется обыкновенной . Магнитное поле в этой волне параллельно \mathbf{M}_0 , а электрическое перпендикулярно \mathbf{M}_0 и **k**. Этой волне соответствует рис.148б. Поскольку считаем $\mu_{\parallel}=1$, то $k_2 = k_0 \sqrt{\varepsilon}$, т.е. обыкновенная волна ничем не отличается от обычной волны в среде с диэлектрической проницаемостью ε .

Рис. 148. Векторы намагниченности и электромагнитного поля нормальных волн в поперечно намагниченной до насыщения гиротропной среде . а) Необыкновенная волна, б) обыкновенная волна.

Дисперсионные зависимости для необыкновенной и обыкновенной волн представлены на рис.147. У необыкновенной волны (ω_1) две ветви. Одна начинается при $\omega_1 = \omega_H + \omega_M$ и частота растет с увеличением k, стремясь слиться с линейной зависимостью $\omega_2(k)$, которая характерна для обыкновенной волны. Вторая ветвь начинается от нуля, а при больших волновых числах слабо зависит от их величины и стремится к ω_{\perp} , при этом как и в случае продольного намагничивания v_{ph} и v_{gr} становятся малыми. В интервале частот от ω_{\perp} до $\omega_H + \omega_M$ необыкновенной волны не существует (если не учитывать диссипацию). Если волну возбудить, то она быстро затухает.

Из формулы (7.86) видно, что μ_{\perp} проходит через резонанс при частоте ω_{\perp} (см. формулу (7.23)), которую часто называют частотой поперечного ферромагнитного резонанса, и обращается в нуль при

$$\omega_a = \omega_H + \omega_M \quad . \tag{7.87}$$

Частоту ω_a принято называть частотой антирезонанса . При этой же частоте обращается в нуль и μ_+ (см. формулу (7.23)) . Частотные зависимости μ , μ_a , μ_+ и μ_\perp приведены на рис.134 .

При распространении произвольной однородной плоской волны перпендикулярно направлению намагниченности волна может быть разложена на две нормальные волны . Поскольку постоянные распространения этих волн разные, то поляризация волны меняется в процессе ее распространения . В качестве примера рассмотрим преобразование линейно поляризованной волны , допустим , распространяющейся вдоль оси y, и пусть при y = 0 направление поляризации составляет угол в 45° с осями x и y. Такая волна является суммой нормальных волн с равными по величине амплитудами электрического поля и совпадающими фазами при y = 0 (рис.147). Если пренебречь потерями , то постоянные распространения нормальных волн равны волновым числам k_1 и k_2 и после прохождения пути

$$l_1 = \frac{\pi}{2|k_1 - k_2|} \tag{7.88}$$

волна будет иметь круговую поляризацию, а через $2l_1$ снова линейную, но ориентированную перпендикулярно имевшейся при y = 0 (рис.149)

Рис. 149. Преобразование поляризации волны, распространяющейся перпендикулярно намагниченности среды.

Преобразования поляризации являются взаимными : они не зависят от направления намагниченности и происходят в обратном порядке при изменении направления распространения на обратное .

При распространении волны под углом θ_{κ} к направлению H_0 низкочастотная ветвь дисперсионной кривой асимптотически стремиться к частоте, которая лежит между ω_H и ω_\perp и следующим образом зависит от θ_{κ}

$$\omega^2 = \omega_H (\omega_H + \omega_M \sin^2 \theta_k), \qquad (7.89)$$

7.4.2. Магнитостатические волны

В интервале частот $\omega_{\rm H} \le \omega \le \omega_{\perp}$, где $\mu < 0$ (см. рис.134), при $k > 10^2$ см⁻¹ и вплоть до примерно $k \le 10^4$ см⁻¹ влиянием неоднородного обмена еще мало, частота нормальных колебаний определяется формулой (7.89) и не зависит от k. Поэтому $v_{gr} \equiv \frac{\partial \omega}{\partial k} = 0$ и волны в этом интервале частот вроде не должно быть. Однако это не так и скорость остается конечной величиной, хотя и малой ~ ($10^6 - 10^8$) см/с . Причин этого несколько : 1. неточность магнитостатического приближения ,2. влияние обменного взаимодействия, 3. влияние граничных условий. Хотя магнитостатическое

приближение в этом интервале волновых чисел справедливым можно считать только в первом приближении применение его оказывается полезным. Такие волны принято магнитостатическими . Характер магнитостатической волны и ее называть дисперсионная зависимость зависят от граничных условий и взаимной ориентации направлений намагниченности и распространения. Так в пленках волны могут быть, во-первых, объемные и поверхностные и, во-вторых, прямыми и обратными. В объемной волне амплитуда переменой намагниченности изменяется по толщине пленки по тригонометрическому закону, а у поверхностной волны от одной из поверхностей в глубину пленки уменьшается экспоненциально, от какой поверхности зависит от направлений M_0 и **k** . В прямой волне направления групповой и фазовой скоростей совпадают, в обратной эти направления противоположные. Покрытие одной или обеих поверхностей пленки металлом изменяет граничные условия, что приводит к существенному изменению дисперсионных зависимостей, которые можно изменять, меняя напряженность постоянного магнитного поля, толщину пленки, тип волны. Примеры дисперсионных зависимостей различного типа волн в пленке феррита граната приведены на рис.150

Рис. 150. Дисперсионные характеристики магнитостатических волн в пленке иттриевого Феррита-граната. Для объемной волны приведены данные только для двух мод. Толщина пленки 10 мкм, H₀ = 1,25 кЭ, M₀ =139 Гс [66].

Малая скорость распространения , сравнимая со скоростью звука , возможность менять характер дисперсионных зависимостей , широкий диапазон частот, регулируемые величиной H_0 и ограниченный снизу лишь возникновением доменов , простые и эффективные приемы возбуждения и приема с помощью антенн , наносимых на поверхность пленок , - все это делает магнитостатические волны удобными для создания различных устройств техники СВЧ , например , линий задержки.

Интересно сравнить частоту собственных однородных колебаний малого эллипсоида ω_0 (см. 7.41) с частотами длинноволновых безобменных магнитостатических волн, даваемых формулой (7.89) и лежащих в пределах $\omega_{H \le} \omega \le \omega$.

Хотя (7.89) справедлива для безграничной среды мы воспользуемся ей для оценки, но учтем размагничивающее поле эллипсоида, т.е. что $\omega_H = \gamma (H_{e0} - N_z M_0)$. Такое сравнение показывает, что ω_0 может лежать либо в интервале между ω_H и ω_{\perp} , либо выше ω_{\perp} . Вырождению, т.е. нахождению в этом интервале частот соответствует условие $H_{e0} \phi \left(N_z + \frac{N_x N_y}{N_z} \right) M_0$, которое для сферы принимает вид $\omega_0 \phi \frac{2}{3} \omega_M$. Для нормально намагниченных бесконечно тонкой пластинки или пленки ω_0 совпадает с

нормально намагниченных бесконечно тонкой пластинки или пленки ω₀ совпадает с нижней границей спектра магнитостатических волн .

7.4.3. Обменные спиновые волны

Если для волн с волновыми числами меньшими 10⁴ см⁻¹ можно было пренебречь энергией неоднородного обмена, то при больших k длина волны становится настолько малой, что не учитывать неоднородность намагниченности в волне нельзя и поэтому спиновые волны при таких величинах k принято называть обменными. Малость длины волны по сравнению с размерами образца уменьшает роль граничных условий. Исключением являются только очень тонкие пленки и малые частицы.

Рассмотрим случай неограниченной в пространстве и намагниченной до насыщения изотропной среды. Пусть спиновая волна представляет лишь небольшое возмущение, которое характеризуется переменной составляющей намагниченности **m**. Для энергии неоднородного обмена, ей соответствующей, можно воспользоваться выражением (5.2), которое теперь для изотропной среды запишется как

$$w_{ex} = \frac{1}{2}q(\nabla \mathbf{m})^2. \tag{7.90}$$

Отсюда находим соответствующее неоднородному обмену переменное эффективное обменное поле \mathbf{h}_{ex} , как вариационную производную от (7.90) по **m**

$$\mathbf{h}_{ex} = q \nabla^2 \mathbf{m}. \tag{7.91}$$

Для гармонической плоской волны $\mathbf{m} = \mathbf{m}_0 \exp(-i\mathbf{k}\mathbf{r})$ и $\mathbf{h} = \mathbf{h}_0 \exp(-i\mathbf{k}\mathbf{r})$ и, подставляя это выражение для **m** в (7.91), получим

$$\mathbf{h}_{ex} = -qk^2\mathbf{m}.\tag{7.92}$$

Чтобы упростить рассмотрение не будем учитывать потери и обратимся к линеаризованному уравнению движения намагниченности (7.7). Если в это уравнение ввести \mathbf{h}_{ex} и учесть (7.92), то получим

$$i\omega\mathbf{m} + (\omega_H + \eta k^2)\mathbf{m} \times \mathbf{z}_0 = \gamma \mathbf{M}_0 \times \mathbf{h}, \qquad (7.93)$$

где z_0 по прежнему орт в направлении M_0 , а

$$\eta = \gamma M_0 q. \tag{7.94}$$

Из (7.94) видно, что η характеризует обменную жесткость магнитной системы. Из уравнения (7.93) следует, что учет \mathbf{h}_{ex} привел к замене

$$\omega_H \to \omega_H + \eta k^2 \tag{7.95}$$

в уравнении (7.7). Поэтому можно воспользоваться формулами для µ и µ_a (7.20) и, используя замену (7.95), сразу написать формулы для магнитных восприимчивостей с учетом неоднородного обмена. В результате получим

$$\mu = \frac{\left(\omega_H + \eta k^2\right)\left(\omega_H + \eta k^2 + \omega_M\right) - \omega^2}{\left(\omega_H + \eta k^2\right)^2 - \omega^2}, \qquad \mu_a = \frac{\omega\omega_M}{\left(\omega_H + \eta k^2\right)^2 - \omega^2}.$$
(7.96)

Из формул для μ и μ_a видно, что учет неоднородного обмена приводит к зависимости магнитных проницаемостей не только от частоты, но и от волнового числа, т.е. к пространственной дисперсии. Если бы была учтена магнитная анизотропия, то магнитные проницаемости зависели бы и от направления распространения относительно кристаллографических осей.

Чтобы получить дисперсионную зависимость при различных углах θ_{κ} между \mathbf{M}_0 и **k** достаточно в (7.89) произвести замену по (7.95) и тогда получим

$$\omega^{2} = \left(\omega_{H} + \eta k^{2}\right)\left(\omega_{H} + \eta k^{2} + \omega_{M}\sin^{2}\theta_{k}\right)$$
(7.97)

Пример дисперсионных зависимостей для $\theta_k = 0$ и $\pi/2$ приведен на рис.151

Рис. 151. Дисперсионные зависимости обменных спиновых волн для изотропного ферромагнетика.
а) ω(k) при H₀=1 кЭ,
б) H₀(k) при ω/2π= 9 ГГц [65].
В обоих случаях M₀ =139 Гс, что соответствует намагниченности насышения Y₃Fe₅O₁₂ при комнатной температуре.

При произвольных углах дисперсионные зависимости лежат между приведенными кривыми . Если $\eta k^2 >> \omega_H$, т.е. при больших величинах k зависимость $\omega(k)$ (7.97) упрощается и

$$\omega = \eta k^2. \tag{7.98}$$

Неоднородный обмен увеличивает жесткость магнитной системы и частота нормальных колебаний быстро растет с уменьшением длины волны . Поскольку реально магнитная система является дискретной решеткой, то значения k ограничены размерами первой зоны Бриллюэна, зависимость $\omega(k)$ при больших k отклоняется от квадратичной и частота спиновых волн ограничена примерно 10^{15} Гц . Сводная дисперсионная зависимость схематически без соблюдения масштаба представлена на рис.152.

7.4.4. Стоячие спиновые волны

В ферромагнитных образцах однородным переменным полем могут быть возбуждены стоячие спиновые волны. Такие колебания называются спин-волновым резонансом. Проблема возбуждения стоячих волн заключается в том, что в СВЧ – диапазоне частот в

Рис. 152. Схематическое изображение без соблюдения масштаба дисперсионной Зависимости спиновых волн.

несколько порядков . Эта трудность может быть преодолена , если использовать тонкие пленки . Так при граничных условиях , соответствующих полностью закрепленным спинам на обоех поверхностях пленки , стоячая волна намагниченности запишется как

$$\mathbf{m} = \mathbf{m}_0 \sin \frac{n\pi}{h} z, \tag{7.99}$$

где n = 1,2,3,...,, h – толщина пленки и ось z направлена перпендикулярно поверхностям пленки. При нечетном n по толщине пленки укладывается нечетное число полуволн и пленка обладает суммарным магнитным моментом. Поэтому однородное переменное поле возбуждает такие колебания. Если подставить волновое число, соответствующее формуле (7.99), в соотношение (7.97) при условии, что внешнее постоянное поле направлено перпендикулярно пленке, то получим

$$H_{0i} = \frac{\omega}{\gamma} - \frac{\eta}{\gamma} \left(\frac{n\pi}{h}\right)^2, \tag{7.100}$$

где $H_{i0} = H_0 - 4\pi M$, т.е. внутренне поле в пленке. Из формулы (7.100) видно, что при постоянной частоте и изменении H_0 будут последовательно возбуждаться стоячие спиновые волны с нечетными n, что можно регистрировать как максимумы поглощения в резонаторе с пленкой.

7.4.5. Спиновые волны в антиферромагнетиках

При решении задачи о колебаниях в спиновой системе антиферромагнетика за основное состояние принимается состояние с однородными намагниченностями подрешеток и суммой их равной нулю. В отличии от ферромагнетика обязательно необходим учет магнитной анизотропии, а также однородного обменного взаимодействия

между подрешетками, так как именно это обменное взаимодействие влияет на колебания, приводящие к скосу магнитных подрешеток. Приведем дисперсионные зависимости для двухподрешеточных антиферромагнетиков.

Антиферромагнетик типа "легкая ось" при $H_0 < \sqrt{2H_a H_E}$:

Н₀ параллельно антиферромагнитной оси

$$\omega_{1,2} = \gamma \sqrt{2H_a H_E + H_E^2 a^2 k^2} \pm \gamma H_0, \qquad (7.101)$$

Н₀ перпендикулярно антиферромагнитной оси

$$\omega_1 = \gamma \sqrt{2H_a H_E + H_E^2 a^2 k^2}, \qquad (7,102)$$

$$\omega_2 = \gamma \sqrt{2H_a H_E + H_0^2 + H_E^2 a^2 k^2}, \qquad (7.103)$$

где *а* - порядка параметра решетки . Эти зависимости графически представлены на рис.153

Рис. 153. Дисперсионные зависимости для спиновых волн в двухподрешеточном антиферромагнетике типа "легкая ось". Сплошные линии соответствуют H₀=0, пунктирные H₀≠0.

- а) Но направлено по антиферромагнитной оси,
- б) Н₀ направлено перпендикулярно антиферромагнитной оси.

В первом случаи в отсутствии поля имеет место вырождение колебаний, которое снимается при приложении поля, при этом для одной из мод величина щели стремится к нулю при $H_0 \rightarrow \sqrt{2H_a H_E}$.

Антиферромагнетик типа "легкая плоскость" : \mathbf{H}_0 перпендикулярно легкой плоскости

$$\omega_1 = \gamma H_E ak, \tag{7.104}$$

$$\omega_2 = \gamma \sqrt{2H_a H_E + H_0^2 + H_E^2 a^2 k^2}, \qquad (7.105)$$

Н₀ параллельно легкой плоскости

$$\omega_1 = \gamma \sqrt{H_0^2 + H_E^2 a^2 k^2}, \qquad (7.106)$$

$$\omega_2 = \gamma \sqrt{2H_a H_E + H_E^2 a^2 k^2}.$$
 (7.107)

Рис. 154. Дисперсионные зависимости для спиновых волн в двухподрешеточном антиферромагнетике типа "легкая плоскость". Сплошные линии соответствуют H₀=0, пунктирные H₀≠0.
а) H₀ направлено перпендикулярно легкой плоскости,
б) H₀ направлено параллельно легкой плоскости.

Для одной из ветвей при k = 0 щель есть , для другой отсутствует . У обоих типов антиферромагнетиков и у всех ветвей при больших k

$$\omega = \gamma H_E ak = \omega_E aq, \tag{7.108}$$

т.е. в отличии от ферромагнетиков закон дисперсии линейный.

Если антиферромагнетик имеет сложную магнитную структуру, то число ветвей колебаний определяется числом магнитных атомов в магнитной элементарной ячейке.

7.4.6. Магноны

При предыдущих рассмотрениях магнитных колебаний среда считалась непрерывной поэтому рассмотрение было классическим макроскопическим . Если воспользоваться принципом корпускулярно – волнового дуализма , то магнитные колебания можно отождествить с квазичастицами – магнонами , энергия , которых пропорциональна частоте колебаний , а импульс волновому числу . Магноны можно считать аналогами фотонов и фононов, представляющими соответственно электромагнитные и упругие колебания.

Энергия магнона є и импульс р запишутся соответственно как

$$\varepsilon = \eta \omega$$
 (7.109)

И

$$\mathbf{p} = \eta \mathbf{k}.\tag{7.110}$$

Здесь, как и ранее, ω - частота магнитных колебаний и **k** – волновое число. Если колебания однородные, то **p** = 0. При больших величинах **k** частота квадратично зависит от **k** по (7.98) и, сделав эту замену в (7.109) и учтя равенство (7.110), получим

$$\varepsilon = \frac{\eta}{\eta} p^2. \tag{7.111}$$

Чтобы получить массу магнона m_0 , воспользуемся связью между энергией и импульсом $\varepsilon = \frac{p^2}{2m_0}$. Приравняв это выражение для ε к (7.111), получим

$$m_0 = \frac{\eta}{2\eta}.\tag{7.112}$$

Для Y₃Fe₅O₁₂ m₀ примерно в 6 раз больше массы электрона.

Из сравнения классических высокочастотных энергий, соответствующих однородным и неоднородным колебаниям намагниченности и обменным спиновым волнам, с произведением энергии одного магнона на их число можно найти связь между составляющими вектора переменной намагниченности и числом магнонов. Оказывается для каждого вида колебаний и спиновых волн число магнонов, пропорционально квадрату амплитуды переменной намагниченности. Если образец намагничен вдоль оси *z*, то

$$M_0 - M_z = n\gamma\eta \equiv ng\mu_B, \tag{7.113}$$

где n- общее число магнонов однородной прецессии и спиновых волн . Таким образом из равенства (7.113) следует, что каждый магнон уменьшает *z* – проекцию намагниченности на

$$\gamma \eta \equiv g \mu_B \,. \tag{7.114}$$

Эта величина и является магнитным моментом одного магнона, который направлен против намагниченности образца. Если обратиться к равенству (1.21), то видно, что один магнон соответствует уменьшению z – проекции магнитного момента атома при переходе его на соседний ниже лежащий уровень пространственного квантования. Такое возбуждение магнитной системы не может быть локализовано на одном атоме, поэтому магнон можно считать "размазанным" по всему образцу и во всяком случае по области, превышающей длину спиновой волны. Из равенства (7.114) следует, что в единицах η механический момент магнона равен 1. Таким образом магнон, как частица, обладающая целочисленным спином, подчиняется статистике Бозе-Энштейна, т.е. является бозоном. Среднее число магнонов \overline{n} с энергией є дается формулой

$$\overline{n} = \left(\varepsilon^{\frac{\varepsilon}{kT}} - 1\right)^{-1},\tag{7.115}$$

где k – постоянная Больцмана.

Возбуждаемые переменным полем магноны можно считать когерентными и в kпространстве им соответствует одна или несколько точек и число магнонов может быть велико, но распределение их не равновесно, так как процессы диссипации приводят к тому, что время жизни магнонов и длина их пробега конечны. Стационарные вынужденные колебания с постоянным числом магнонов могут поддерживаться только процессом их рождения электромагнитным полем. Но в магнитоупорядоченных веществах при любых температурах существуют некогерентные тепловые магноны, которые находятся в термодинамическом равновесии с другими квазичастицами и, конечно, в первую очередь с фононами. Распределение магнонов по энергии и в пространстве волновых чисел широкое и зависит от температуры, чем выше температура, тем сильнее возбуждаемые тепловые магноны понижают намагниченность магнитных подрешеток. Для изотропного ферромагнетика, если принять квадратичный закон дисперсии (7.98), расчет дает следующую зависимость намагниченности от температуры

$$M(T) = M(0) - 5{,}157 \cdot 10^{-5} \eta^{-\frac{1}{2}} T^{\frac{3}{2}}.$$
(7.116)

Таким образом получается закон трех вторых (3.6) Блоха. Вклад магнонов в теплоемкость для ферромагнетиков дается формулой

$$c_{v} = 0.74 \eta^{-\frac{3}{2}} T^{\frac{3}{2}}.$$
 (7.117)

7.4.7. Параметрическое возбуждение спиновых волн

При предыдущем рассмотрении спиновых волн считалось, что амплитуды переменных поля и намагниченности малы, поэтому можно было линеаризовать уравнение движения намагниченности. В случае больших амплитуд поля и намагниченности связь между ними становится существенно нелинейной и это приводит к возникновению ряда нелинейных эффектов – генерации гармоник, детектированию колебаний, взаимодействию различных типов колебаний. Проявлением такого взаимодействия является возбуждение некоторых типов спиновых волн при однородных колебаниях намагниченности.

Из механики и радиотехники известно, что в системе возможно так называемое параметрическое возбуждение колебаний при периодическом изменении какого-либо параметра системы и, если частота изменений параметра ω_p , то возбуждаются колебания с частотой ω , которая связана с ω_p следующим соотношением

$$\omega = \frac{n}{2}\omega_p, \tag{7.118}$$

где n = 1,2,3,....

При параметрическом возбуждении спиновых волн параметрами, колеблющимися под действием внешнего переменного электромагнитного поля, являются либо однородные колебания намагниченности, если переменное поле перпендикулярно намагниченности (поперечная накачка), либо колебания внутреннего магнитного поля, если переменное поле параллельно намагниченности (параллельная накачка). При периодических колебаниях таких параметров магнитной системы благодаря нелинейности уравнения движения намагниченности происходит передача энергии от однородных колебаний параметров происходит экспоненциальный рост амплитуды тех равновесных спиновых волн, частота которых связана соотношением (7.118) с частотой колебаний параметра и ограничивается другими нелинейными процессами.

Рассмотрим случай перпендикулярной накачки. Возбуждения однородной прецессией с частотой $\omega_{\rm H} = \omega_{\rm p}$ и волновым числом $k_{\rm H} = 0$ можно трактовать как распад соответствующего магнона на магноны с $k_{\rm m} \neq 0$. При этом должен выполняться закон

сохранения энергии и квазиимпульса. При процессе первого порядка, т.е. в случае n = 1 в соотношении (7.118), возбуждаются два магнона (трехмагнонный процесс) и законы сохранения запишутся как

$$\omega_H = \omega_{1m} + \omega_{2m}, \tag{7.119}$$

$$\mathbf{k}_{H} = \mathbf{0} = \mathbf{k}_{1m} + \mathbf{k}_{2m},\tag{7.120}$$

где индексы с m соответствуют первому и второму возбужденным магнонам . Из этих законов сохранения следует , что $\mathbf{k}_{1m} = -\mathbf{k}_{2m}$ и $\omega_{1m} = \omega_{2m} = \frac{1}{2}\omega_H$, т.е. однородная прецессия возбуждает две спиновые волны с частотами , равными половине частоты прецессии , и распространяющиеся в противоположные стороны .

При процессе второго порядка (n = 2) два магнона, соответствующие однородной прецессии, распадаются на два магнона (четырехмагнонный процесс) с $k \neq 0$ и справедливы следующие равенства

$$\omega_{H} = \frac{1}{2} (\omega_{1m} + \omega_{2m}), \qquad (7.121)$$

$$\mathbf{k}_{H} = \mathbf{0} = \mathbf{k}_{1m} + \mathbf{k}_{2m}.\tag{7.122}$$

Таким образом и при четырехмагнонном процессе образуются две спиновые волны , направленные в противоположные стороны , но частоты их равны частоте накачки $\omega_{1m=} \omega_{2m=} \omega_H$. Возбужденные параметрически спиновые волны частично когерентные – лишь сумма фаз волн , распространяющихся в противоположные стороны, определяется фазой накачки . Разность их фаз величина хаотическая.

Для параметрического возбуждения спиновых волн необходимо, чтобы частота возбуждаемых колебаний попала в спектр спиновых волн. Поэтому необходимо, чтобы $\frac{1}{2}\omega_p$ для процессов первого порядка и ω_p для процессов второго порядка были выше границы спектра спиновых волн, даваемого формулой (7.97). Очевидно, что наинизшая частота этого спектра при k = 0 и $\theta_{\rm k}$ = 0 и равна $\omega_{\rm H}$. Если использовать эту формулу для эллипсоида, то необходимо учесть размагничивающее поле. При поле, приложенном вдоль одной из осей эллипсоида, которую примем за ось *z*, для наинизшей частоты получим

$$\omega_H = \gamma (H_{oe} - N_z M_0). \tag{7.123}$$

Приравнивая это $\omega_H \kappa \frac{1}{2} \omega_p$ или к ω_p , получим следующие условия процессов первого порядка

$$H_{oe} \pi \left(\frac{\omega_p}{2\gamma} + N_z M_0 \right) \tag{7.124}$$

и для процессов второго порядка

$$H_{oe} \pi \left(\frac{\omega_p}{\gamma} + N_z M_0 \right). \tag{7.125}$$

Спиновые волны легче возбуждаются при процессах первого , чем второго порядка при этом анализ показывает, что при процессах первого порядка легче возбуждаются спиновые волны с $\theta_{\kappa} = 45^{0}$, если , конечно, такие волны могут быть возбуждены , а при процессах второго порядка с $\theta_{\kappa} = 0$. Рис.155 демонстрирует как меняются условия возбуждения первого порядка при постоянной частоте накачки с изменением намагничивающего поля.

Рис. 155. Дисперсионные характеристики спиновых волн при различных значениях намагничивающего поля : $(H_0)_1 < (H_0)_2 < (H_0)_3 < (H_0)_4$. Пупктирнал линия соответствует $\theta_x = 45^{\circ}$. Точками обозначены спиновые волны, которые становятся нестабильными при параметрическом возбуждении первого порядка (поперечная накачка) [65].

В случае поперечной накачки минимальное пороговое поле возбуждения при совпадении частоты накачки ω_p с частотой собственных однородных колебаний намагниченности ω_0 , т.е. при

$$\omega_{\rm p} = \omega_0 = 2\omega_{\rm im} \tag{7.126}$$

Пользуясь формулами (7.41) и (7.97), можно получить, что равенство (7.126) возможно только при условии

$$\omega_p \pi \frac{\omega_M N_\perp}{2\pi} \equiv \omega_{np} \tag{7.127}$$

для эллипсоида вращения и при

$$\omega_p \ \pi \frac{2}{3} \omega_M \equiv \omega_{np} \,. \tag{7.128}$$

для сферы . Рис.156 иллюстрирует различные условия возбуждения спиновых волн в сфере при процессах первого прядка в зависимости от положения $\omega_p = \omega_0$ относительно спектра спиновых волн. Заметим , что в случае (б), когда условие едва выполняется , возбуждаются волны с малым θ_{κ} и пороговое поле велико, но с понижением частоты угол θ_{κ} растет и пороговое поле уменьшается.

Рис. 156. Взаимное расположение спектра спиновых волн, частот однородных колебаний намагниченности, и поперечной накачки ω_p для сферы. а) - Условие (7.127) хорошо выполняется.

б) - Условие (7.127) едва выполняется.

в) - Условие (7.127) не выполняется.

Сплошные линии при резонансе на частоте ω_p при $H_{oe} = H_{res}$,

[65].

Остановимся теперь кратко на случае продольной накачки . Напомним , что при цилиндрической симметрии тензора χ' и круговой поляризации переменного поля **h** конец вектора **M** движется по окружности , лежащей в плоскости , перпендикулярной **M**₀, и переменной составляющей **M**_z нет . Если система не имеет цилиндрической симметрии из-за анизотропии формы или кристаллографической анизотропии , то конец вектора **M** движется уже не по круговой орбите . Обычно это явление называют эллиптичностью , хотя движение может идти по сложной не плоской кривой . Эллиптичность возникает и при цилиндрической симметрии системы, если переменное поле имеет некруговую поляризацию . Появление эллиптичности в колебаниях намагниченности приводит к возникновению переменной составляющей в M_z , т.е. в направлении постоянного поля . При продольной накачке эта переменная составляющая намагниченности взаимодействует с полем накачки , что и приводит к передачи энергии спиновым волнам . Условия сохранения (7.119 и 120) справедливы и в этом случае .

7.4.8. Процессы релаксации

Электромагнитное поле, действуя на магнитную систему, вызывает в ней однородные, колебания и тем самым выводит магнитную систему из состояния термодинамического равновесия. Если возбуждение прекращается, то магнитная система возвращается в исходное термодинамически равновесное состояние – происходит процесс релаксации, в результате которого энергия магнитных колебаний перераспределяется между другими видами колебаний в теле. Скорость релаксации определяется тем, насколько быстро убывают амплитуды неравновесных колебаний намагниченности. В том случае, если происходит непрерывное воздействие на магнитную систему, то амплитуда возбуждаемых колебаний не растет беспредельно. Благодаря процессам релаксации устанавливается стационарное состояние, при котором приток энергии от электромагнитного поля в магнитную систему уравновешивается оттоком энергии от этой системы в другие виды колебаний . Такой переход энергии и есть тот процесс диссипации , который учитывался чисто феноменологически членом с коэффициентом а в уравнении движения намагниченности Ландау-Лифшица-Гильберта.

В терминологии корпускулярных терминов возбуждение магнитной системы магнитоупорядоченного вещества электромагнитным полем есть уничтожение фотонов и рождение соответствующих магнонов, а процесс релаксации есть уничтожение таких магнонов и рождение других квазичастиц. Принято различать два процесса релаксации спин-спиновый и спин-решеточный. При спин-спиновом рождаются новые магноны, т.е. энергия перераспределяется в пределах магнитной системы при этом могут быть процессы как собственные, т.е. происходящие в идеальном кристалле, так и обусловленные неоднородностями. В собственных процессах участвуют три, четыре и более магнонов при этом чем больше участвуют магнонов, тем процесс менее вероятен. Закон сохранения импульса при таких процессах выполняется. Надо отметить, что при спин-спиновой релаксации энергия в конце концов попадает из магнитной системы в решетку, но в этом случае это уже процесс вторичный. Вклад собственных спинспиновых процессов в релаксацию невелик и ему соответствует ширина линии при однородном резонансе, например, у $Y_3Fe_5O_{12}$ всего 0.1 Э, в то время как наблюдаемые величины у большинства ферритов порядка десятков и сотен эрстед. Гораздо большую роль играют процессы релаксации, связанные с неоднородностями. Такие процессы можно трактовать как рассеяние магнонов на дефектах. Дефектами в этом случае являются нарушения в периодичности в расположении магнитных ионов, блочность монокристаллов, поликристалличность образца, неоднородные упругие деформации, дислокации, поры, шереховатость поверхности образца. При рассеянии магнонов наиболее вероятны двухмагнонные процессы и закон сохранения импульса не выполняется.

Спин-решеточная релаксация происходит путем магнон- фононного взаимодействия, т.е. за счет преобразования магнонов в фононы, при этом могут быть процессы двухчастичные – магнон преобразуется в фонон - , так с участием нескольких частиц. Такие процессы происходят при соблюдении закона сохранения. Эффективность спинрешеточной релаксации зависит от того, насколько сильно магнитная система связана с решеткой, а это определяется спин-орбитальной связью магнитных ионов. Если основным состоянием является орбитальный синглет как, например, в ионов Mn^{2+} , Fe^{3+} , Eu^{2+} , Gd^{3+} , то связь слабая и вклад спин-решеточной релаксации невелик. Так у $Y_3Fe_5O_{12}$ ширина линии однородного резонанса всего порядка 0,1 Э. У ионов с вырожденным основным орбитальным состоянием таких как Fe^{2+} , Co^{2+} , Mn^{3+} и большинства ионов редких земель, спин-орбитальная связь сильная, что приводит к малым временам релаксации (так называемые быстрорелаксирующие ионы) и соответственно к широким, порядка десятков и сотен эрстед, линиям резонанса. Даже небольшое содержание быстрорелаксирующих ионов может существенно увеличить ширину резонансной линии.

В случае веществ с существенной электропроводностью таких, как EuO и халькогенидные шпинели, существенный вклад в процесс релаксации вносит электропроводность. На рис.157 показаны пути, по которым может происходить перекачка энергии из одной системы в другую в процессе релаксации.

Рис. 157. Потоки энергии между системами магнитоупорядоченного вещества [65].
ЛИТЕРАТУРА

- 1. Кринчик Г.С. Физика магнитных явлений . М. : Изд-во Моск. ун-та. 1976 и 1985.
- 2. Тикадзуми С. Физика ферромагнетизма. М.: Мир, 1983, Ч. 1; 1987, Ч. 2.
- 3. Смоленский Г.А. и Леманов В.В. Ферриты и их техническое применение. Л. : Наука, 1975.
- 4. Henry W.E. Phys. Rev. 1952, V. 88, P. 559.
- 5. Van Vleck J.H. Theory of electric and magnetic susceptibilities . Oxford Univ. Press, 1952.
- 6. Ладау Л.Д. Zs. Phys. 1930, V. 64, P. 629.
- 7. Anderson P.W. Phys. Rev. 1950, V. 79, P. 350.
- 8. Goodenough J.B. Magnetism and the chemical Bond. N.Y. : J. Wiley and Sons , 1963. Русский перевод : Гуденаф Д. Магнетизм и химическая связь. М. : Металлургия, 1968.
- Kanamory J. J.Phys. Chem. Solids, 1959, V. 10, P. 87.
 В сб. Solid State Physics, N.Y.: Acad. Press, 1963, V. 14, P. 99.
- 10. Anderson P.W. Magnetism, N.Y.: 1963, V. 1, P 25.
- 11. Ландау Л.Д. Sow. Phys. 1933, V.4, Р.675Гуревич А.Г. Магнитные резонансы в ферритах антиферромагнетиках . Л. : Наука, 1973.
 - 12. Shull C.G., Strauser W.A., Wollan E.O. Phys. Rev. 1951, V. 83, P. 333.
 - 13. Shull C.G., Wollan E.O., Koehler W.C. Phys. Rev. 1951, V. 84, P. 912.
 - 14. Neel L. Ann. De Phys. 1948, V. 3, P.137.
 - 15. Дзялошинский И.Е. ЖЭТФ, 1957, т. 32, с. 1547.
- 16. Bizette, Tsai B. C.R. 1954, V. 238, P. 1575.
- 17. Stout J.W., Griffel M. Phys. Rev. 1949, V.76, P. 144.
- 18. Stout J.W., Adams H.E. JACS, 1942, V.64, P. 1535.
- 19. Ландау Л.Д., Лифшиц Е.М. Статистическая физика, М.Л., 1951.
- 20. Шубников А.И. Симметрия и антисимметрия конечных фигур , М. : Изд. АН СССР, 1951.
- 21. Тавгер Б.А., Зайцев В.М. ЖЭТФ, 1956, т. 30, с. 564.
- 22. Тавгер Б.А. Кристаллография, 1958, т. 3, с. 339.
- 23. Заморзаев А.М. Кристаллография, 1957, т. 2, с. 15.
- 24. Neel L. Ann. de Phys. 1948, V. 3, P. 137 (Сокр. русский перевод в сб. Антиферромагнетизм, ИЛ, 1956).
- 25. Gorter E.W. C.R. 1950, V. 230, P. 192.
- 26. Panthenet R. Ann. de Phys. 1958, V. 3, P. 424.
- 27. Jonker G.H., van Santen J.H. Physica, 1950, V. 16, P. 337.
- 28. Urushibara A. et al Phys. Rev. 1995, V. B51, P. 14103.
- 29. Gong G. at el in 40th Annual Coference Maggetism and Magnetic Materials (Phyladelphia, Pennsylvania 1955), Abstracts, P. 22.
- 30. Zener C. Phys. Rev. 1951, V. 81, P. 441.
- 31. Zener C. Phys. Rev. 1951, V. 82, P. 403.
- 32. De Gennes P.G. Phys. Rev. 1960, V. 118, P. 141.
- 33. Wollan E.O., Koehler W.C. Phys. Rev. 1955, V. 100, P. 545.
- 34. Губанов А.И. ФТТб 1960, т. 2, с. 505.
- 35. Hasegawa R., Argyle B.E., Tao L.J. AIP Conf. Pros. 1975, V. 24, P. 564.
- 36. Maletta H., Felsch W. Z.Phys., Ser. B, 1980, Bd 37, S. 55.
- Muser D., Wenger L.E., van Dugneveldt A.J., Mydosh J.A. Phys. Rev. B, 1982, V. 27, P. 3100 3103.
- 38. Nagata S., Keesom P.H., Harrison H.R. Phys. Rev. B, 1979, V. 19, P.1633.
- 39. Bozorth R.M. J. Appl. Phys. 1937, V. 8, P. 575.
- 40. Киренский Л.В. ЖЕТФ 1937, т. 7, с. 879.

- 41. Бозорт Р. Ферромагнетизм, М: ИЛ, 1956.
- 42. Hansen P. Proc. Int. School Phys. "Enrico Fermi" 1978, LXX, P.56.
- 43. Ожогин В.И., докторская диссертация, Институт атомной физики им. И.В.Курчатова, 1974.
- 44. Боровик-Романов А.С. ЖЭТФ, 1960, т. 38, с. 1088.
- 45. Астров Д.Н. ЖЭТФ, 1960, т. 38, с. 984; 1961, т. 40, с. 1035.
- 46. Roth W.L. J. Appl. Phys. 1960, V. 31, P. 2000.
- 47. Малоземов А. и Слонзуский Дж. Доменные стенки в материалах с цилиндрическими магнитными доменами . М. : Мир, 1982.
- 48. Della Torre E., Hegedus C., Kadar G. AIP Conf. Proc. 1975, V. 29, P. 89.
- 49. Bobeck A.H., Della Torre E. Magnetic Bubbles , 1975.
- 50. Kooy C., Enz U. Philips Res. Repts., 1960, V. 15, P. 7.
- 51. Bobeck A.H. Bell Syst. Tech. J., 1967, V. 46, P. 1901.
- 52. Боков В.А., Волков В.В. ФТТ, 1997, т. 39, с. 660.
- 53. Kosinski R.A., Engemann J. J. Magnet. Magn. Mat., 1985, V. 50, P. 229.
- 54. Боков В.А., Волков В.В., Мажевский А., Петриченко Н.Л., Станкевич А. ФТТ, т. 37, с. 2966.
- 55. Четкин М.В., Гарадецкий С.Н., Филатов В.Н., Курбатова Ю.Н., Гомонов С.В., Квливидзе В.А., Кадомцева М.Б. ЖЭТФ, 1985, т. 89, с. 1445.
- 56. Hagedorn F.B. J. Appl. Phys., 1974, V. 45, P. 3129.
- 57. Лисовский Ф.В. Физика цилиндрических магнитных доменов. М. : Сов. радио, 1979.
- 58. Kittel Ch. Rev. Mod. Phys., 1949, V. 21, P. 541. Русский перевод в сб. "Физика ферромагнитных областей", М.: ИЛ, 1951.
- 59. Grossinger R. Phys. Status Solidi (a), 1981, V. 66, P. 665.
- 60. Snoek J.L. Physica, 1949, V. 15, P. 244.
- 61. Miles P.A., Westphal W.B., von Hippel A. Rev. Mod. Phys., 1957, V. 29, P. 279. Русский перевод в сб. Диэлектрическая спектроскопия под ред. Смоленского Г.А., М.: ИЛ, 1960.
- 62. 1979Smit J., Wijn H.P.J. Ferrites, Philips Techicel Library, 1959. Русский перевод : Смит Я. и Вейн Х. Ферриты , М.: ИЛ, 1962.
- 63. Van den Handel J., Gijsman H.M., Poulis N.J. Physica, 1952, V. 18, P. 862.
- 64. Белов К.П., Звездин А.К., Кадомцева А.М., Левитин Р.З. Ориентационные переходы в редкоземельных магнетиках, М. : Наука, 1979.
- 65. Гуревич А.Г. и Мелков Г.А. Магнитные колебания и волны. М. : Наука, 1994.
- 66. Гуревич А.Г. ISSEP, 1997, N 9, с. 100.

УЧЕБНИКИ

- 1. Смит Я. и Вейн Х. Ферриты . М.: ИЛ, 1962.
- 2. Боровик-Романов А.С. Антиферромагнетизм . Пахомов А.С. и Смольков Н.А. Ферриты . Сб. Итоги науки : физ.-мат. науки , т.4. М.: Изд. АН СССР , 1962.
- 3. Туров Е.А. Физические свойства магнитоупорядоченных кристаллов. М.: Наука, 1963.
- 4. Туров Е.А. и Петров М.П. Ядерный магнитный резонанс в ферро и антиферромагнетиках . М.: Наука, 1969.
- 5. Туров Е.А., Колчанов А.В., Меньшенин В.В., Мирсаев И.Ф., Николаев В.В. Симметрия и физические свойства антиферромагнетиков . М. : Физматлит, 2001.
- 6. Изюмов Ю.А. и Озеров Р.П. Магнитная нейтронография . М.: Наука, 1966.
- 7. Вонсовский С.В. Магнетизм микрочастиц. М. : Наука, 1973.
- 8. Физика магнитных диэлектриков / Отв. ред. Смоленский Г.А. . Л. : Наука, 1974.
- 9. Яковлев Ю.М., Генделев С.Ш. Монокристаллы ферритов в радиоэлектронике . М.: Советское радио, 1975.
- Кузьмин Е.В., Петраковский Г.А., Завадский Э.А. Физика магнитоупорядоченных веществ. Новосибирск : Наука, 1976.
- 11. Крупичка С. Физика ферритов, т.т. 1, 2. М.: Мир, 1976.
- 12. Ивановский В.И., Черникова А.А. Физика магнитных явлений : Учебное пособие. М.: Изд. Московского университета, 1981.
- 13. Уайт Р.М. Квантовая теория магнетизма. М. : Мир, 1972.
- 14. Ахиезар А.И., Барьяхтар В.Г., Пелетминский С.В. Спиновые волны . М. : Наука, 1967.
- 15. Звездин А.К., Котов В.А. Магнитооптика тонких пленок . М. : Наука, 1988.
- 16. Хуберт А. Теория доменных стенок в упорядоченных средах . М.: Мир, 1977.
- 17. Гуденаф Д. Магнетизм и химическая связь. М.: Металлургия, 1968.
- 18. Залесский А.В. Магнитные свойства кристаллов . Сб. Современная кристаллография , т. 4. М.: Наука, 1981.
- 19. Лисовский Ф.В., Антонов Л.А. Магнетизм и магнитные материалы : Терминологический справочник . М.: Вагриус, 1997.
- 20. Элементы и устройства на цилиндрических магнитных доменах : Справочник / Под ред. Евтихеева Н.Н. и Наумова Б.Н. . М. : Радио и связь , 1987.
- 21. Тябликов С.В. Методы квантовой теории магнетизма . М.: Наука, 1-ое изд. 1965, 2-изд. 1975.
- 22. Белов К.П., Белянчикова М.А., Левитин Р.З., Никитин С.А. Редкоземельные феррои антиферромагнетики . М. : Наука, 1965.
- 23. Белов К.П. Ферриты в сильных магнитных полях. М.: Наука, 1972.
- 24. Преображенский А.А. Теория магнетизма, магнитные материалы и элементы . М. : Высшая школа, 1972.
- 25. Метфессель Э., Маттис Д. Магнитные полупроводники. М.: Мир, 1972.
- 26. Еременко В.В. Введения в оптическую спектроскопию магнетиков . Киев : Наукова думка, 1974.
- 27. Кондорский Е.И. Зонная теория магнетизма. М.: изд. МГУ, 1976.
- 28. Бобек Э., Дела Торе Э. Цилиндрические магнитные домены. М.: Энергия, 1977.
- 29. Белов К.П., Звездин А.К., Кадомцева А.М., Левитин Р.З. Ориентационные переходы в редкоземельных магнетиках . М.: Наука, 1979.
- 30. Нагаев Э.Л. Физика магнитных полупроводников. М.: Наука, 1979.
- 31. Балбашов А.М., Червоненкис А.Я. Магнитные материалы для микроэлектроники. М.: Энергия, 1979.
- 32. Белов К.П. Редкоземельные магнетики и их применение. М.: Наука, 1980.

- 33. Калинников В.Т., Ракитин Ю.В. Введение в магнетохимию. М.: Наука, 1980.
- 34. Браун У.Ф. Микромагнетизм. М.: Наука, 1979.
- 35. Бердышев А.А. Введение в квантовую теорию магнетизма. Екатеринбург: Изд. Уральского государственного университета, 1992.
- 36. Никифоров К.Г. Многокомпонентные магнитные полупроводники . Калуга : Изд. Калужского государственного педагогического университета, 2000.
- 37. Боровик Е.С., Мильнер А.С. Лекции по ферромагнетизму. Харьков : Изд. Харьковского университета, 1960.
- 38. Боровик Е.С., Мильнер А.С., Еременко В.В. Лекции по ферромагнетизму. Харьков: Изд. Харьковского университета,
- 39. Тикадзуми С. Физика ферромагнетизма. М. : Мир, т. 1, 1983 ; т. 2, 1987.
- 40. Смоленский Г.А., Леманов В.В. Ферриты и их техническое применение. Ленинград: Наука, 1975.
- 41. Вонсовский С.В. Магнетизм. М.: Наука, 1971.
- 42. Малоземов А., Слонзуски Дж. Доменные стенки в материалах с цилиндрическими магнитными доменами. М : Мир, 1982.
- 43. Лисовский Ф.В. Физика цилиндрических магнитных доменов. М. : Сов. радио, 1979.
- 44. Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М. : Наука, 1973.
- 45. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М. : Наука, 1994.
- 46. Бамбуров В.Г., Борухович А.С., Самохвалов А.А. Введение в физико-химию ферромагнитных полупроводников. М. : Металлургия, 1988.
- 47. Хандрих К., Кобе С. Аморфные ферро и ферримагнетики. М.: Мир, 1982.
- 48. Гинзбург С.Л. Необратимые явления в спиновых стеклах. М. : Наука, 1989.
- 49. Вонсовский С.В. Магнетизм. М. : Наука, серия Проблемы науки и технического прогресса, 1984.
- 50. Каганов М.И., Цукерник В.М. Природа магнетизма . М. : Наука, Библиотечка Квант, 1982.