Почему мы не проваливаемся сквозь пол

Страница: 1 ... 4950515253545556575859 ... 180

Рис. 27. Схематическое изображение сдвига, происходящего путем скольжения целой плоскости атомов без помощи дислокационных механизмов.

На рис. 27 изображена двумерная модель - два параллельных ряда монет, лежащих на столе. Ясно, что последнее сопротивление сдвигу исчезает в момент, когда атомы- монеты балансируют на вершинах друг у друга; такое положение создается в момент, когда слой оказывается сдвинутым относительно другого слоя на угол 30°. Пройдя эту точку, атомы будут сваливаться в положение равновесия на дне следующей ямы, и сдвиг на одно межатомное расстояние будет завершен. Сопротивление сдвигу началось с нуля, возросло до некоторого максимума, затем снова упало до нуля, когда атомы оказались на вершинах. Сопротивление будет максимальным примерно на полпути к вершине, в нашем случае это соответствует углу сдвига около 15°. Трехмерный случай будет немного более сложным, для него максимум наступает при 10°. Для кристаллов, которые состоят из атомов различных размеров, этот угол может быть еще меньше.

Очень грубые вычисления, основанные на этой модели, дают величину теоретической прочности на сдвиг порядка 10% от модуля упругости Е . (Более сложный расчет, проведенный А. Келли, дает 5–10% от Е .) Впрочем, не слишком большая точность этих чисел особого значения не имеет: при обычных испытаниях реальных материалов мы достигаем их весьма редко[28]. Теоретическое значение прочности на сдвиг для железа составляет около 1200 кг/мм2, но практически кристалл очень чистого железа сдвигается при напряжениях, лежащих между 1,5 и 8,0 кг/мм2, для рядовых сталей прочность на сдвиг составляет 15–25 кг/мм2, для самых прочных сталей - около 150 кг/мм2.

Очень мягкие металлы, например чистые золото, серебро, свинец, можно испытывать на сдвиг руками. После сильного наклепа сопротивление сдвигу несколько повышается, но оно никогда не приближается к теоретической величине. Широко известна ковка металла, которая делает его более твердым: таким путем повышали твердость кромок еще медного и бронзового оружия, а в старину часовых дел мастера всегда обрабатывали так латунные заготовки шестеренок. (Если вы воздержитесь от смазки шестеренок старинных напольных часов, то зубья их не только перестанут собирать пыль и быстро истираться, но с течением времени будут становиться тверже и полироваться, и так будет продолжаться века.)

— 54 —
Страница: 1 ... 4950515253545556575859 ... 180