Почему мы не проваливаемся сквозь пол

Страница: 1 ... 125126127128129130131132133134135 ... 180

Как случается с большинством удачных гипотез, с гипотезой о винтовой дислокации перестарались: с нею связывался почти каждый аспект роста почти каждого вида кристаллов. Сегодня, по-видимому, ясно, что многие кристаллы обходятся в своем росте без механизма Франка, но факт остается фактом - очень многие кристаллы используют этот механизм, винтовая дислокация - вполне реальное и очень важное явление.

Совсем не обязательно, чтобы дислокация была целиком краевого или винтового типа. Дислокационная линия может начаться как краевая, а закончиться - как винтовая, и наоборот. А между началом и концом она может быть отчасти винтовой, а отчасти - краевой. В таких случаях говорят, что дислокация имеет винтовую и краевую компоненты. Но правила движения двух типов дислокаций неодинаковы, и в этом одна из причин сложностей поведения реальных дислокаций, представляющих собой обычно искривленные пространственные линии.

Сегодня теория дислокации - тщательно разработанная и поощряемая наука, которая, несомненно, пролила свет на поведение твердых тел, особенно металлов. Теперь мы в значительной мере понимаем реальное поведение металлов. С другой стороны, нельзя сказать, что знания о дислокациях привели к каким-то радикальным усовершенствованиям механических свойств материалов. Что касается металлов, то можно, пожалуй, сказать, что большая часть возможных и важных улучшений была сделана еще традиционными эмпирическими методами, а роль дислокационной теории свелась к объяснению того, почему и как эти улучшения получились.

Наблюдение дислокаций

Какой правдоподобной и логичной ни была бы научная гипотеза, для большинства людей она остается все-таки голой абстракцией, пока нельзя будет что-то потрогать собственными руками или увидеть собственными глазами. Косвенных или математических доказательств для них недостаточно. Примером может служить тепловая теория. Из элементарной физики каждый знает, что температура вещества определяется непрерывным и беспорядочным движением его молекул. Но поскольку в том же курсе физики говорится еще, что молекулы слишком малы, чтобы их видеть, а также потому, что ощущения тепла и холода никоим образом не связываются с представлением о движущихся частицах, - мысль о теплоте, как о молекулярном движении, обычно не ощущается нами как реальность.

Ботаник Броун в 1827 году, наблюдая в микроскоп пыльцу некоторых цветов, обнаружил, что она находится в непрерывном приплясывании. Броуновское движение мельчайших твердых пылинок, взвешенных в воде, легко можно увидеть. Капните, например, обычной китайской туши или акварели на предметное стеклышко микроскопа и, накрыв каплю другим стеклом, взгляните на нее при довольно большом увеличении обычного оптического микроскопа. Вы увидите, что частицы помельче носятся в совершенно сумасбродной джиге. Сколько бы вы ни смотрели на этот танец, он будет продолжаться. А за танцем кроется вот что. Сами частицы туши или краски имеют что-нибудь около микрона в поперечнике, то есть они в несколько тысяч раз больше окружающих их молекул жидкости. Молекулы носятся взад-вперед совершенно беспорядочным образом. Наши частицы вовлекаются в эту толчею. Те частицы, что покрупнее, никак не реагируют на толчки, а вот для частиц помельче молекулярные толчки оказываются чувствительными, они прыгают от них в разные стороны так, что все это видно в обычный оптический микроскоп.

— 130 —
Страница: 1 ... 125126127128129130131132133134135 ... 180