Можно указать целый ряд еще не решенных вопросов. Но уже сейчас интересно обсудить, какое возможное значение для развития современной теоретической физики могут иметь уже полученные данные. Как мы уже указывали, в сверхтекучести гелия-II мы имеем явление, чрезвычайно похожее на сверхпроводимость. В обоих случаях при температуре вблизи абсолютного нуля, где можно ждать проявления квантовой природы явлений, процесс течения как электричества, так и самой материи начинает происходить без потерь. Было бы неожиданно, если бы оба эти явления не определялись одной теорией, пока еще непонятной особой стороной квантовых процессов в конденсированном состоянии. В сверхпроводимости мы имеем случай, когда носители электричества — электроны — могут без трения течь через кристаллическую решетку. В процессе сверхтекучести мы имеем атомы, которые могут организованно двигаться относительно друг друга тоже без трения. Теоретики ищут те квантовые соотношения, которые объясняют возможность такого движения без трения, и естественно думать, что им удастся более легко решить задачу, изучая взаимодействие электронов с атомами, образующими кристаллическую решетку металла. На этом можно было бы и кончить изложение наших работ, если бы совсем неожиданно для меня не была предложена одна идея практического применения большой текучести жидкого гелия. Я хочу вам рассказать о ней не потому, что я уверен в ее практическом осуществлении, а только чтобы проиллюстрировать, что всякое обнаруженное в природе явление неизбежно открывает новые возможности, которые так или иначе всегда будут использованы в нашей жизни. Эти применения могут быть совсем неожиданными и относятся к областям, от которых сам исследователь очень далек и о которых он не осведомлен и не мог думать, когда вел свои работы. Смелая идея применения жидкого гелия была мне высказана проф. Л. Г. Лойцянским. Его идея пока очень далека от осуществления и может вызвать еще целый ряд возражений, но столь интересна, что о ней следует рассказать. Дело касается испытания крыльев и фюзеляжа аэропланов на обтекаемость. Сейчас инженерам приходится пользоваться очень большими и дорогими аэродинамическими трубами, где аэропланы испытывают в натуральную величину. Как известно, нельзя применять уменьшенные модели аэропланов, ибо теория подобия, на которой основывается экспериментирование на моделях, здесь полностью не применима. При уменьшении масштабов в аэродинамических трубах требуется такое же уменьшение так называемой кинематической вязкости окружающей среды. Эта кинематическая вязкость есть частное от деления вязкости на плотность среды. Чтобы уменьшить ее, пытались поднимать давление воздуха в аэродинамических трубах, так как при этом плотность воздуха увеличивалась, вязкость оставалась неизменной, и, следовательно, кинематическая вязкость уменьшалась. Это оказалось очень дорого и сложно. — 27 —
|