Существуют и исключения более значительные — связанные с воздействиями искривленного пространства-времени на относительные скорости; возможны такие эффекты, связанные с отрицательной энергией, а кроме того, получены интригующие результаты, касающиеся импульсов света, скорость которых превышает нашу «с» (пусть даже движение их происходит таким образом, что никакой добавочной информации они переносить не могут). Однако все это выводит нас за пределы технического уровня этой книги. Подозреваю, что ученые будущего будут оглядываться на нас и дивиться тому, что мы вообще принимали эту оговорку всерьез — или что нам понадобилось столь долгое время, чтобы понять: существует простой способ, который позволяет быстренько открыть новый «Диснейленд» в туманности Андромеды. С. 31 …начинает расти масса корабля…: Ни одно из обычных наших слов здесь не работает, в частности, «раздувается» следует воспринимать лишь как метафору. Космический корабль, — или протон, или любое другое тело — вовсе не расширяется во всех направлениях. Скорее, здесь выходит на первый план представлявшееся нам довольно смутным различие между сохранением материи и сохранением массы — различие, о котором шла речь в главе, посвященной Лавуазье. Если определить массу как присущее любому телу свойство сопротивляться попыткам ускорить его, что мы, собственно, и делаем, когда пытаемся определить его вес, тогда появляется возможность увеличения массы тела без «раздувания» образующей его материи. И пока имеет место увеличения сопротивления попыткам ускорить тело, это требование выполняется. При малых скоростях нашего привычного мира прирост массы не будет достаточным для того, чтобы его удалось заметить, — именно поэтому предсказания Эйнштейна и показались столь поразительными, — однако по мере того, как тело улетает от нас на скорости, приближающейся к скорости света, этот эффект становится все более явственным. И предсказания Эйнштейна оказываются на редкость точными. Для того, чтобы рассчитать, насколько увеличится масса данного тела, нужно взять его скорость, возвести ее в квадрат, разделить на квадрат скорости света, вычесть результат деления из единицы, взять квадратный корень этого результата, потом получить величину обратную и умножить ее на массу интересующего нас тела. В символьной записи это выглядит проще: если тело движется со скоростью «v», то для получения его выросшей вследствие этого массы нужно умножить начальную массу тела «m» на 1/?(1-v2/с2). Чтобы прочувствовать это уравнение, полезно «повертеть» его, используя разного рода экстремальные значения. Если v намного меньше с — т. е. космический корабль движется медленно, — тогда (1-v2/с2) почти не отличается от единицы, поскольку значение v2/с2 очень мало. И ни квадратный корень, ни взятие обратной величины ничем тут не помогут — вы все равно получите число весьма и весьма близкое к 1. У реального, запускаемого из Флориды шаттла максимальная скорость составляет порядка 30000 км/час. Это настолько малый процент скорости света, что масса шаттла возрастает на величину много меньшую одной тысячной процента, — даже когда он со свистом покидает атмосферу на самой большой своей скорости. Однако, если шаттл или что-то еще движется по-настоящему быстро, если v оказывается близкой к с, то (1-v2/с2) становится близким к нулю. А это означает, что квадратный корень этой величины также очень мал, и разделив на него единицу, вы получите величину огромную. Взгляните на тело, которое проносится мимо вас со скоростью, составляющей 99 процентов скорости света, и вы увидите, что масса его возросла во множество раз. — 151 —
|