Конструкции, или почему не ломаются вещи

Страница: 1 ... 2829303132333435363738 ... 245

Общее расположение и соразмерность частей живых организмов контролируются в процессе роста механизмом РНК - ДНК - знаменитой "двойной спиралью" Уилкинса, Крика и Уотсона[15]. Однако и в этих рамках каждое конкретное растение или животное располагает большой свободой в построении деталей своей "конструкции". Не только толщина, но и состав каждого из нагруженных элементов живой конструкции существенно зависят от степени их использования и характера испытываемых ими в течение жизни нагрузок[16]. Таким образом, происходит оптимальное с точки зрения прочности живой конструкции изменение отдельных ее деталей. У природы-конструктора скорее прагматический, чем математический склад характера, к тому же плохие конструкции всегда могут быть съедены хорошими.

К сожалению, инженерам такие методы конструирования пока недоступны, и они вынуждены прибегать к догадкам или расчетам, а чаще комбинировать то и другое вместе. Очевидно, что как соображения безопасности, так и соображения экономии заставляют предсказывать распределение нагрузки между отдельными частями конструкции и определять их размеры. Кроме того, хотелось бы знать, каковы будут перемещения нагруженной конструкции, поскольку излишняя гибкость может быть столь же опасной, как и недостаточная прочность.

Французская теория и британский прагматизм

После того как сложились основные представления о прочности и жесткости, математики приступили к разработке методов анализа плоских и пространственных упругих систем, с помощью которых было исследовано поведение самых разных конструкций при их нагружении. Так сложилось, что в течение первой половины XIX в, теорией упругости занимались в основном французы. Хотя не исключено, что теория упругости как-то особенно сродни французскому темпераменту[17], все же, представляется, практическая поддержка этих исследований прямо или косвенно исходила от Наполеона I и осуществлялась основанной в 1794 г. Политехнической школой.

Многие из этих работ носили абстрактно-математический характер, а поэтому остались непонятыми большинством инженеров-практиков и не получили признания вплоть до 1850 г. Особенно это относится к Англии и Америке, где практикам всегда отдавалось безусловное предпочтение перед теоретиками. А кроме того, как известно, "один англичанин всегда побивал трех французов". Так, о шотландском инженере Томасе Телфорде (1757-1834), чьими величественными мостами мы восхищаемся еще и поныне, имеется следующее свидетельство современника: "Он испытывал сильнейшее отвращение к занятиям математикой и не удосужился познакомиться даже с началами геометрии. Это было воистину удивительно, и когда нам случилось рекомендовать одного нашего молодого друга к нему на службу, он, узнав об отличных математических способностях претендента, не колеблясь, заявил, что, по его мнению, такого рода познания скорее говорят о непригодности юноши к работе с ним, чем об обратном".

— 33 —
Страница: 1 ... 2829303132333435363738 ... 245