С другой стороны, если мы будем увеличивать нагрузку при фиксированной длине, то ситуация в случае сжатой конструкции будет выглядеть получше. Например, если увеличить нагрузку в сто раз, с 1 т до 100 т, то, если вес растянутой конструкции увеличится соответственно с 3,5 до 350 кг, вес одной колонны высотой в 10 м увеличится только десятикратно, с 200 до 2000 кг. Поэтому в случае сжатия гораздо экономичнее поддерживать большую нагрузку, чем малую (рис. 152). Все эти рассуждения справедливы также и для панелей, пластин и оболочек (см. приложение 4). Рис. 152. Зависимость относительного веса (и стоимости) детали, которая должна передать заданную нагрузку, от ее длины. Приведенный анализ подтверждает рациональность таких конструкций, как палатки и парусные суда. В них сжимающие нагрузки действуют концентрированно на небольшое количество по возможности коротких мачт или шестов. В то же время растягивающие нагрузки, как мы уже говорили, лучше распределить среди большого количества канатов и тросов. Поэтому шатер, имеющий единственный шест и множество растяжек, является самым легким "зданием", которое только можно построить при заданном объеме. Любая палатка будет легче и дешевле капитального здания из дерева или камня. Точно так же катер или шлюп с единственной мачтой имеет более легкую и эффективную оснастку, чем шхуна, кеч или любой более сложный корабль с большим количеством мачт. Именно поэтому были тяжелы и неэффективны А-образные или треугольные мачты древних египтян и конструкторов викторианских броненосцев (см. гл. 10). Конструкция человеческого тела имеет много общего с конструкцией шатра и парусного корабля. Небольшое количество сжатых деталей, то есть костей, расположенных примерно в центре конструкции, окружено множеством мышц, сухожилий и связок, работающих на растяжение, причем эта система гораздо сложнее системы парусов и канатов полностью оснащенного корабля. Кстати, с конструкционной точки зрения две ноги лучше, чем четыре, а сороконожка может существовать только потому, что ноги у нее весьма коротки. Масштабные эффекты, или еще раз о законе двух третейНапомним, что уже столетия назад Галилею пришла мысль о том, что, поскольку вес конструкции растет, как куб ее размеров, а поперечное сечение несущих деталей увеличивается пропорционально квадрату размеров, то напряжения в материале геометрически подобных конструкций должны расти пропорционально их размерам. Если разрушение конструкции происходит из-за растягивающих напряжений, прямо или косвенно определяемых ее собственным весом, то это означает, что с увеличением размеров относительная толщина и вес несущих деталей должны расти не пропорционально размерам и весу всей конструкции, а гораздо быстрее. Поэтому размеры таких конструкций не могут превышать некоторого предела. — 182 —
|