Конструкции, или почему не ломаются вещи

Страница: 1 ... 166167168169170171172173174175176 ... 245

Конечно, Эйлер совсем не собирался заниматься несущей способностью сжатого стержня как конструкционного элемента. Просто среди многих других своих математических открытий он изобрел то, что теперь называется вариационным исчислением, и он искал задачи, к которым можно было бы применить этот новый математический метод. Один из его друзей предложил попробовать этот метод для определения наименьшей высоты тонкого вертикального стержня, при которой этот стержень начнет выпучиваться под собственным весом. Такая формулировка этой не очень реальной задачи объясняется тем, что, как мы уже упоминали в гл. 2 понятия напряжения и деформации возникли лишь в значительно более поздние времена. Для ее решения нужно было применить вариационный метод. Если переложить полученный Эйлером результат на современный язык, то получится то, что сейчас называется формулой Эйлера для критической нагрузки потери устойчивости продольно сжатого стержня, а именно: P =?2 (EI /L 2 ), где P - нагрузка, при которой выпучиваются стержень или панель; E - модуль Юнга материала; I - момент инерции поперечного сечения стержня или панели (гл. 10); L - длина стержня. Естественно, все эти величины должны быть выражены в одной и той же системе единиц. (Удивительно, что так много важных расчетных формул имеют столь простой вид[108].)

Формула Эйлера применима к длинным и тонким колоннам и стержням всех видов - как сплошным так и пустотелым, а что, быть может, и более важно - к тонким панелям и пластинам, которые встречаются в конструкциях самолетов, кораблей и автомобилей. Если мы построим график зависимости критической нагрузки стержня или панели от длины, то получится нечто похожее на рис. 142, на котором показаны два возможных механизма разрушения.

Короткие стержни разрушаются описанным выше путем с образованием бочки или дроблением на мелкие куски. Когда отношение длины к толщине стержня достигает величины 5-10, эта линия пересекает кривую, соответствующую эйлеровой форме потери устойчивости. Теперь более опасным становится выпучивание, и длинный стержень выходит из строя вследствие выпучивания. В действительности переход от разрушения материала к потере устойчивости происходит не так резко, существует некая переходная область, отмеченная на рис. 142 пунктиром.

Рис. 142. Зависимость предельного сжимающего напряжения от длины стержня.

— 171 —
Страница: 1 ... 166167168169170171172173174175176 ... 245