Но главную задачу для cGh-теории Бронштейн видит в космологии: «решение космологической проблемы потребует предварительного построения той единой теории электромагнетизма, тяготения и квант, которая обозначена на нашей схеме 2 вторым пунктирным прямоугольником» [21, с. 28]. (Если здесь к электромагнетизму добавить фундаментальные взаимодействия, не известные в 1933 г., то получим высказывание вполне современное.) Такую cGh-карту теоретической физики Бронштейн предложил в статье 1933 г. (те же самые идеи он излагал при обсуждении доклада Я. И. Френкеля «О кризисе современной физики» в ЛФТИ 26 февраля 1932 г. [291]). Единственное изменение бронштейновской карты, которое потребовалось в дальнейшем, состояло в переходе от плоского изображения к трехмерному. Внимательно посмотрев на схему 2, можно заметить некоторую ее недостаточность. Например, на этой схеме не поместилась ньютоновская теория гравитации, а также путь от G-теории к cG-теории. Устранить эту асимметрию можно, расположив бронштейновскую схему в трехмерном «пространстве теорий» в cGh-системе координат (схема 3); это сделал А. Л. Зельманов [186]. В результате получается удобное представление фундаментальной теоретической физики (см., например, [168, гл. 8]). Схема 3. «Пространство» физических теорий в cGh-системе координат НТТ — ньютоновская теория тяготения, СТО — специальная теория относительности, КМ — квантовая механика, ОТО — общая теория относительности, СРКТ — специально-релятивистская квантовая теория поля, ОРКТ — общерелятивистская квантовая теория Была у бронштейновской cGh-схемы и предыстория. Документальное ее свидетельство — заметка Гамова, Иваненко и Ландау 1928 г. «Мировые постоянные и предельный переход», опубликованная в ЖРФХО [156]. Заметка начинается с чисто методического, казалось бы, вопроса о построении системы единиц. Авторы отмечают, что можно двумя способами установить единицу измерения для какой-либо новой величины. Можно задать эталон для этой величины произвольно. Либо же, пользуясь каким-то законом, связывающим новую величину с уже известными и содержащим численный коэффициент, можно подобрать эталон так, чтобы этот коэффициент обратился в единицу. В первом случае получается новая мировая постоянная. Во втором — число основных (произвольных) эталонов и число мировых констант остаются неизменными: «мы получаем лишь естественную (по отношению к предыдущим) единицу для измерения нашей величины». Можно воспользоваться вторым способом и для уменьшения числа основных единиц, положив одну из мировых констант равной единице. Авторы называют это редукцией. По их мнению, «введение новых постоянных и редукция к меньшему числу отобразились в истории физики как смена теорий и их постепенное объединение». — 98 —
|