в 1932 г.). В первом абзаце статьи Френкеля и Бронштейна примечательна фраза: «Для того чтобы убедиться, что дискретный ряд уровней энергии свободного электрона, движущегося в магнитном поле, не является одним из парадоксов, связанных с уравнением Дирака, а соответствует реальному физическому явлению, хотя еще и не обнаруженному экспериментально, полезно показать, что такое квантование неизбежно возникает во всякой форме квантовой теории — как в "полуквантовой" механике Бора, так и в волновой механике Шредингера и Дирака». Квантуя вращательное движение электрона в магнитном поле с помощью боровского постулата mvr=nh, а затем с помощью «более правильного» условия [mv — (e/c)A]r=nh (А — вектор-потенциал магнитного поля H), они получают равноотстоящие уровни энергии W=nh(u L и W=2nhcoL((й ь =еН/2тс — частота Лармора). Решение соответствующей задачи квантовой механики подтвердило и уточнило вторую формулу для спектра W=(2n+1)hcoL, дав энергию основного состояния W o =h(j) L . Авторы установили правила отбора, показав, что при переходах возможн4 о излучение только одной длины волны X = 7tc/coL= 104 (Гс/H) см. Это первое указание на резонансный характер взаимодействия квантовых электронов с излучением — процесса, который играет важную роль в современной магнитооптике твердого тела (экспериментально циклотронный резонанс в металлах и полупроводниках наблюдался в начале 50-х годов). В 1930 г. такое излучение было недосягаемо для эксперимента, и авторы обращают внимание на другой эффект — «тенденцию свободных электронов к спонтанному переходу в основное состояние с минимальной вращательной энергией Wo». Эту тенденцию авторы назвали весьма парадоксальной, но не заметили, что от найденного ими спектра открывался путь к предсказанию нового явления — диамагнетизма электронов в металлах. Такое предсказание сделал другой физтеховец, Ландау, в работе [213], которая вышла в свет практически одновременно со статьей Френкеля—Бронштейна. Весной 1930 г. Ландау в качестве рокфеллеровского стипендиата находился в Англии. Стимулом к его размышлениям, по-видимому, послужили обсуждения с П. Л. Капицей аномальных свойств электропроводности висмута в сильных магнитных полях (эффект Капицы). А их итогом стала теория диамагнетизма Ландау. В первой части своей работы Ландау решает ту же задачу, что и Френкель с Бронштейном, и получает, естественно, тот же энергетический спектр. Любопытно отметить, что за четыре месяца до статьи Раби в том же журнале была помещена статья В. А. Фока о квантовании гармонического осциллятора в магнитном поле. Осциллятор с частотой со=0 можно рассматривать как свободный электрон. Формулы для квантования его энергии в магнитном поле в пределе со—<ю следуют из фоковских формул для осциллятора, однако это осталось незамеченным [253]. — 36 —
|