Твердые тела, наоборот, имеют некоторую упругость, т. е. стремятся все время сохранить свою форму; поэтому приходится заключить, что атомы твердых тел всегда находятся в каких‑то определенных положениях равновесия и могут только совершать около этих положений более или менее быстрые колебания. Быстрота движений, совершаемых молекулами и атомами жидких и твердых тел, должна, как и в газах, возрастать при увеличении температуры. Этим объясняется испарение при нагревании, так как более быстро движущиеся молекулы жидкости могут преодолеть притяжение со стороны окружающих молекул той же жидкости и выскочить из жидкости наружу. Пар, насыщающий пространство над поверхностью данной жидкости,‑ это и есть тот газ, который состоит из таких «сбежавших из жидкости» молекул. Из жидкости выскакивают, правда, все новые и новые молекулы, по молекулы пара, падающие на жидкость, проникают туда вновь, и поэтому в конце концов устанавливается равновесие между жидкостью и ее паром, когда в каждую секунду столько же молекул выскакивают из жидкости («испаряется»), сколько их падает в жидкость обратно. Из всего сказанного видно, какие простые и ясные представления вносит гипотеза атомов и молекул в физику. Основным в этой атомно‑молекулярной картине газов, жидкостей и твердых тел является представление о том, что с возрастанием температуры растет и скорость движения атомов. Это представление сыграло очень большую роль в истории атомистического учения. До XIX столетия среди физиков господствовало мнение, что теплота есть какое‑то невесомое вещество ‑ «теплород»,‑которое может соединяться с обычными веществами. Нагретое тело, согласно этой точке зрения,‑ это такое, в котором много теплорода; при охлаждении тела теплород и з него уходит. Это широко распространенное представление о вещественности тепла было опровергнуто, как только физики стали изучать связь между теплотой и движением. Наличие этой связи очевидно: при трении, которым сопровождается движение, возникает тепло,‑ этим издавна пользовались для добывания огня народы, стоящие на низких ступенях культуры,‑ с другой же стороны, теплота, выделяющаяся при сжигании угля в топке парового котла, является основной причиной возникающего в паровой машине движения поршня в цилиндре, махового колеса, шатуна и т. д. В 1798 году некий Бенджамин Томпсон, американец, авантюрист, прежде сражавшийся на стороне Англии во время войны за независимость Соединенных Штатов, а затем поступивший на службу к баварскому королю, от которого, он получил титул графа Румфорда, наблюдал в мюнхенском арсенале сверление пушечных жерл. Сверление сопровождалось выделением очень большого количества тепла. Когда Румфорд погружал просверливаемую металлическую болванку вместе с работающим в ней сверлом в воду, то вода через два с половиной часа начинала кипеть. Пораженный этим огромным выделением тепла, Румфорд подробно исследовал все условия, при которых тепло возникает. Оказалось, что если просверлить в болванке жерло острым сверлом, а затем заменить его тупым сверлом, которое уже не может отделять от металла стружки, но все же поворачивается с большим трением, то дальнейшее вращение сверла позволяет извлечь из болванки любое количество тепла ‑ стоит только вращать сверло достаточно долго. Это было несовместимо с представлением о вещественности тепла: если бы теплота была веществом («теплородом»), то из данной болванки нельзя было бы извлечь больше тепла, чем в ней в действительности содержалось. Поэтому Румфорд решил, что теплота не вещество, а движение. Теплота ‑ это движение невидимых глазу атомов, из которых состоит любое вещество. Нагреть какое‑нибудь тело ‑ это значит привести его атомы в более быстрое движение, чем то, в котором они находились раньше. Охладить тело ‑ значит замедлить движение атомов. Так возникла механическая теория тепла (термодинамика), получившая свое окончательное обоснование уже только в последней четверти XIX века ‑ в работах Людвига Больцмана и Уилларда Гиббса, которые доказали, что все законы тепловых явлений могут быть выведены теоретически, если применять теоремы механики к движению невидимых глазу атомов. Это был такой же триумф атомистической теории, как и тот, который ей доставили работы Дальтона в химии: не только химические, но и физические явления легко объяснялись с помощью предположения, что все тела состоят из мельчайших, невидимых глазу атомов. — 37 —
|