83. Еще один случай. Существует 8 вариантов показаний, которые дали в ходе процесса подсудимые А, В и С. Действительно, А мог выступить с двумя вариантами показаний, каждый из которых мог сочетаться с двумя вариантами показаний подсудимого В, поэтому существуют 4 варианта показаний подсудимых А и В. (Перечислим эти варианты: 1) А и В оба признали себя виновными; 2) А признал себя виновным, В заявил о своей невиновности; 3) А заявил о своей невиновности, В признал себя виновным; 4) А и В оба заявили о своей невиновности.) Каждый из четырех вариантов показаний подсудимых А и В приходится на два варианта показаний подсудимого С, поэтому общее число показаний подсудимых А, В и С достигает 8. В каждом из 8 вариантов показаний подсудимых виновным (по крайней мере в принципе) может быть любой из троих. Следовательно, общее число вариантов всего «расклада» (под «раскладом» мы условимся понимать набор из показаний каждого их троих подсудимых и его фактической виновности или невиновности) достигает 24. Разумеется, если бы мы знали, какой из 24 вариантов соответствует действительности, то нам было бы известно, кто лгал и кто говорил правду. Составим поэтому сводную таблицу всех 24 вариантов расклада. Она понадобится нам для решения не только этой задачи, но и одной из следующих задач. Все необходимые пояснения приведены после таблицы. Буквы «Л» и «И» (от слов «Ложь» и «Истина») указывают, говорит ли правду (И) или лжет (Л) соответствующий подсудимый. В случае 5В (на пересечении полосы 5 и столбца «В виновен») мы видим, что А лжет, В лжет, а С говорит правду. (Под случаем 5В мы понимаем такой вариант, когда А признал виновным себя, В заявил о своей невиновности, С показал, что А невиновен, а в действительности виновен В.) Другие примеры: в случае 8 С все трое подсудимых лгали; в случае 3В все трое говорили правду; в случае 4С подсудимый А говорил правду, а В и С лгали. Бармаглот, после того как ему стало известно, что именно сказал каждый подсудимый, а также что по крайней мере одно показание правдиво и по крайней мере одно ложно, сумел установить, кто виновен. Что из того, о чем мог сообщить Белый Рыцарь, позволило Бармаглоту установить, кто виновен? Предположим, Бармаглот узнал от Белого Рыцаря, что А заявил о своей невиновности, В заявил о своей невиновности, а С заявил о невиновности А (тем самым мы оказываемся в пределах случая 1). Располагая такой информацией, Бармаглот мог бы исключить виновность подсудимого С (так как в случае 1С все трое подсудимых лгали), но, пожалуй, не мог бы установить, кто виновен: А или В (так как в случае 1С по крайней мере одно показание правдиво и по крайней мере одно ложно; аналогичная картина наблюдается в случае 1В). Следовательно, Белый Рыцарь не мог сообщить Бармаглоту эту информацию (так как Бармаглот установил, кто виновен). А как обстояло бы дело в случае 2 (А заявил о своей невиновности, В заявил о своей невиновности, а С заявил о виновности А )? И в этом случае Бармаглот не смог бы определить, кто виновен (поскольку мог представиться и случай 2А, и случай 2В). С иной ситуацией мы сталкиваемся в случае 3, когда по крайней мере одно правдивое и по крайней мере одно ложное показание возможны только в подслучае 3С. Следовательно, если бы Белый Рыцарь сообщил Бармаглоту, что А заявил о своей невиновности, В заявил о своей невиновности, а С заявил о невиновности А, то Бармаглот путем умозаключений пришел бы к выводу, что С виновен. Поэтому не исключено, что Белый Рыцарь сообщил Бармаглоту именно эту информацию. Проанализировав остальные случаи (4, 5, 6, 7 и 8), читатель обнаружит, что только в случае 6 (помимо уже известного нам случая 3) Бармаглот мог бы установить, кто из троих подсудимых виновен. Как и в случае 3, виновным был бы подсудимый С. — 112 —
|