Одну из систем отсчета мы установим на причале, она будет неподвижной. Назовем ее «Галилей» (G) и все расстояния будем отмерять от той точки, где она находится. Справа и впереди нее будут располагаться положительные величины, а слева и позади – отрицательные. С помощью системы отсчета «Галилей» мы можем определить координаты в пространстве любого элемента (рисунок 1). Это не единственная возможная точка зрения. Вторая наша система отсчета отправится в плавание в трюме корабля и будет соответствовать студенту Пизанского университета Доминику, одному из учеников Галилея, который согласился провести предложенный учителем эксперимент. Он будет находиться в левом нижнем углу трюма (см. рисунок), где мы и зафиксируем нулевую точку отсчета (D). Предположим, что корабль движется вправо вдоль причала с постоянной скоростью u. РИС. 1 РИС. 2 Нам нужно, чтобы Галилей мог видеть Доминика, но при этом сам ученик не должен знать, что делается за бортом. Поэтому предположим, что в трюме есть ряд иллюминаторов, через которые внешний наблюдатель может увидеть, что происходит внутри, но Доминик стоит к иллюминаторам спиной. Галилей видит, что положение Доминика в пространстве по мере движения корабля меняется (см. рисунок 2). Часы участников эксперимента перед началом опыта были синхронизированы для того, чтобы делать временные замеры. Если Галилей устанет измерять расстояние, он сможет легко рассчитать местонахождение своего ученика в любой момент времени. Для этого ему надо умножить скорость корабля (и) на время, проведенное им в пути (t). Если х – это расстояние, проделанное Домиником, то: х = u•t. Доминик, запертый вместе с мухами в трюме, не знает, что удаляется от своего учителя. Для него его положение не изменилось: x' = 0. Видя летающую рядом муху, он может определить ее координаты (х’m;y'm). Галилей сквозь один из иллюминаторов тоже видит насекомое и определяет высоту его полета координатой ym, совпадающей с координатой Доминика y'm. Однако координаты горизонтальной позиции мухи, данные учеником и учителем, разнятся: xm и x'm не совпадают. К передвижениям мухи по трюму Галилей добавляет постоянное движение корабля и. Здесь мы можем остановиться и спросить себя: существует ли какой-либо способ, позволяющий связать между собой наблюдения учителя и ученика? Положительный ответ дают следующие уравнения, которые называются преобразованиями Галилея: х=х'+u-t' y=y ' [1] t=t'. С их помощью Галилей может перевести любые данные Домиником координаты, будь то траектория полета мухи или движение другого объекта, в свою систему отсчета. — 26 —
|