Спектры очень сложны. Различным элементам соответствует невероятно большое число разнообразных вариантов расположения и интенсивности спектральных линий. Поэтому трудно себе представить, что именно они послужили ключом к пониманию внутренней структуры атома. Всем интересно разглядывать цветной узор на крыльях бабочек, но, как сказал позднее Бор, “никто не думает, что, глядя на раскраску их крыльев, можно понять основы биологии”20. Связь между спектральными линиями и атомами была очевидна, но в феврале 1913 года Бор совершенно не представлял себе, в чем она состоит. Хансен предложил Бору взглянуть на формулу Бальмера для спектральных линий водорода. Насколько Бор помнил, он никогда о такой формуле не слышал. Более вероятно, что он просто забыл ее. Хансен записал формулу и пояснил: никто не понимает, почему она работает. Иоганн Бальмер — швейцарский математик, преподававший в школе для девочек в Базеле и по совместительству читавший лекции в местном университете. Однажды Бальмер пожаловался коллегам, что ему нечего делать. Они, зная его пристрастие к нумерологии, рассказали о четырех спектральных линиях водорода. Заинтригованный Бальмер решил, что сможет описать все четыре линии одной математической формулой. Правда, всем казалось, что такой формулы быть не может. В середине XIX века шведский физик Андерс Ангстрем измерил с очень высокой точностью длины волн четырех спектральных линий водорода в красной, зеленой, голубой и фиолетовой областях видимого спектра. Обозначив их “альфа”, “бета”, “гамма” и “дельта”, он получил, что соответствующие им длины волн суть 656,210; 486,074; 434,01 и 410,12 нм21. В июне 1884 года, на пороге своего шестидесятилетия, Бальмеру удалось получить формулу, с помощью которой можно было вычислить длины волн (X) каждой из этих четырех спектральных линий. Значения X = b [т2 / (т2 — л2)], где т и л — целые числа, а Ь — константа, которая определяется из эксперимента. Она равна 364.56 нм. Бальмер показал, что если положить л равным 2 и считать, что т принимает значения 3,4,5 или 6, то приведенная формула практически точно воспроизводит искомую последовательность длин волн. Например, если в формулу подставить л = 2 и т = 3, то получается длина волны красной альфа-линии. Однако Бальмер сделал нечто большее. Он не просто воспроизвел длины волн известных четырех линий, которые позднее были названы в его честь серией Бальмера. Он предсказал существование пятой линии для л = 2 и т = 7. Бальмер не подозревал, что Ангстрем, работа которого была опубликована в Швеции, уже открыл такую линию и измерил ее длину волны. Два значения, экспериментальное и теоретическое, совпадали почти идеально. — 80 —
|