Рис. 3. Фотоэлектрический эффект — максимальная кинетическая энергия испускаемых электронов в зависимости от частоты света, падающего на металлическую поверхность Этот процесс Эйнштейн описал простым уравнением: максимальная кинетическая энергия электрона, покинувшего металлическую поверхность, равна энергии поглощенного кванта минус работа выхода. Используя это уравнение, Эйнштейн предсказал, что график зависимости максимальной кинетической энергии электрона от частоты будет представлять собой прямую линию, начинающуюся в точке, соответствующей пороговой частоте данного металла. Для любого металла наклон этой линии всегда будет точно равен постоянной Планка h. мо игнорировал гипотезу о квантах, считая, что “физическая теория, на которой базируется эта формула, полностью несостоятельна”62. С самого начала большинство физиков восприняло кванты света Эйнштейна с тем же недоверием. Лишь немногие задавались вопросом, существуют ли вообще кванты света или это лишь удобное допущение, необходимое для расчетов. Но и они соглашались только на то, что свет, а, следовательно, и электромагнитное излучение, лишь ведет себя как частица при обмене энергией с материей, но не состоит из квантов63. Так думал и Макс Планк. В 1913 году, когда Планк и три других физика выдвинули Эйнштейна в действительные члены Прусской академии наук, свою рекомендацию они закончили словами, которые должны были оправдать Эйнштейна: “Подытоживая, можно сказать, что среди важных задач, которыми изобилует современная физика, вряд ли есть хоть одна, в которой Эйнштейн не получил бы выдающихся результатов. Иногда он выходит за рамки дозволенного, как, например, в случае гипотезы о квантовой природе света. Но это нельзя поставить ему в упрек. Ибо если время от времени не рисковать, нельзя получить истинно новый результат даже в самой точной из естественных наук”64. Спустя два года скрупулезные эксперименты Милликена уже не позволяли игнорировать уравнение фотоэффекта Эйнштейна. В 1922 году это было невозможно: годом ранее Эйнштейн удостоился Нобелевской премии именно за объяснение фотоэлектрического эффекта. Но стоящая за этим физика — кванты света — премией отмечена не была. К этому времени Эйнштейн был уже не безвестным служащим патентного бюро в Берне, а всемирно известным физиком-теоретиком, автором теории относительности. Многие считали его величайшим ученым со времен Ньютона. Однако его квантовая теория света еще не стала общепризнанной: слишком уж решительно она порывала с прошлым. Упорное нежелание согласиться с мнением Эйнштейна о существовании квантов света объяснялось тем, что имелось огромное число свидетельств в пользу волновой теории света. Но спор о том, что такое свет, частица или волна, шел давно. В XVIII и в начале XIX века господствовала корпускулярная теория Исаака Ньютона. В предисловии к “Оптике” (1704) он писал: “В этой книге я намерен не объяснять свойства света с помощью гипотез, но описать и доказать их на основании здравого смысла и опытов”65. Первые эксперименты были выполнены им в 1666 году. С помощью призмы белый свет расщеплялся на цвета радуги, а потом с помощью второй призмы они опять соединялись вместе, превращаясь в луч белого света. Ньютон считал, что лучи света состоят из корпускул — “очень маленьких тел, испускаемых светящейся субстанцией”66. Если частицы света двигаются по прямой, теория Ньютона позволяет понять, почему повернувшего за угол человека можно слышать, но не видеть: свет за угол не заворачивает. — 44 —
|