Квант. Эйнштейн, Бор и великий спор о природе реальности

Страница: 1 ... 191192193194195196197198199200201 ... 331

Пучок электронов или фотонов Рис. 13. Мысленный эксперимент Эйнштейна с одной щелью

Эйнштейн нарисовал линию — непрозрачный экран с небольшой щелью, а за экраном — полукруг, обозначавший фотопластинку. Когда пучок электронов или фотонов падает на экран, часть их пройдет через щель и ударится о фотографическую пластинку. Из-за узости щели проходящие сквозь нее электроны дифрагируют, как волны, во всех возможных направлениях. В согласии с требованиями квантовой теории, объяснил Эйнштейн, прошедшие через щель электроны движутся к пластине как сферические волны. Тем не менее, ударяясь о пластину, электроны ведут себя как отдельные частицы. Таким образом, указал Эйнштейн, мы имеем дело с двумя разными точками зрения на этот эксперимент.

Согласно копенгагенской интерпретации, до проведения наблюдения (а удар о пластинку можно считать за таковое) имеется отличная от нуля вероятность обнаружить отдельный электрон в любой точке пластины. Хотя волна, представляющая собой электрон, распределена в большой области пространства, в каждый момент времени, если данный электрон обнаружен в точке А, вероятность обнаружить его в точке В мгновенно обращается в нуль. Согласно копенгагенской интерпретации, квантовая механика дает полное описание события, происходящего с отдельным электроном в данном эксперименте, а значит, поведение каждого электрона описывается волновой функцией.

Это и есть камень преткновения, заявил Эйнштейн. До наблюдения вероятность обнаружить электрон была “размазана” по всей фотопластинке. Следовательно, вероятность обнаружить его в точке В или в какой-то другой точке мгновенно меняется в тот момент, как электрон ударяется о пластину в точке А. Такая мгновенная “редукция (коллапс) волновой функции” подразумевает что-то вроде распространения причинноследственной связи со скоростью, превышающей скорость света. Пусть какое-то событие в точке А является причиной события в точке В. Эти события должны быть разделены временным интервалом, чтобы позволить сигналу, двигающемуся со скоростью света, дойти от точки А до точки В. Эйнштейн был уверен, что нарушение этого требования, позднее названного требованием локальности, указывает на противоречивость копенгагенской интерпретации, и, значит, квантовая механика не является законченной теорией индивидуальных процессов. Эйнштейн предложил альтернативное объяснение.

Каждый прошедший через щель электрон до соударения с фотопластинкой движется по одной из большого числа возможных траекторий. Однако сферическая волна, утверждал Эйнштейн, соответствует не отдельному электрону, а “облаку электронов”38. Квантовая механика предоставляет информацию не об отдельном событии, а только о том, что называется “ансамблем” событий39. Поскольку каждый отдельный электрон движется от щели до пластины по особой траектории, волновая функция описывает не отдельный электрон, а облако электронов. Поэтому квадрат волновой функции, |\|/ (4)|2, представляет собой не вероятность обнаружить отдельный электрон в точке А, а вероятность обнаружить один из членов ансамбля в этой точке40. Это, как сказал Эйнштейн, — “чисто статистическая” интерпретация квантовой механики. То есть статистическое распределение большого числа ударяющихся о пластину электронов приводит к образованию характерной дифракционной картины41.

— 196 —
Страница: 1 ... 191192193194195196197198199200201 ... 331