Гейзенберг пришел в восторг, увидев, что все детали пазла точно подошли друг к другу. Его версия квантовой механики строилась из некоммутирующих между собой матриц, пред- ставляющих такие наблюдаемые величины, как координата и импульс. С самого начала, с тех пор, как он обнаружил это странное правило, согласно которому порядок перемножения двух наборов чисел оказывается существенной частью математического аппарата новой механики, стоящую за этим правилом физику покрывала завеса тайны. Теперь ему удалось эту завесу приподнять. Согласно Гейзенбергу, только “неопределенность, выраженная неравенством ApAq 2 h/2it, делает возможным существование равенства” pq — qp = -ih/2n39. Он утверждал, что только благодаря неопределенности “его выполнение становится возможным без требования изменить физический смысл величин р и д”40. Принцип неопределенности выявил фундаментальное различие между квантовой и классической механикой. В классической физике координата частицы и ее импульс в принципе могут быть измерены одновременно с любой степенью точности. Если в каждый момент времени положение и скорость тела точно известны, можно точно указать путь, по которому тело двигалось в прошлом, где оно находится сейчас и по какому пути будет двигаться дальше. Эти устоявшиеся понятия повседневной физики “можно точно так же определить и для квантовых процессов”, утверждал Гейзенберг41. Однако их ограниченность становится очевидной, если попытаться измерить одновременно две сопряженные величины: координату и импульс или энергию и время. Гейзенберг считал принцип неопределенности мостом, связывающим наблюдение того, что представляет собой след электрона в камере Вильсона, и квантовую механику. Построив этот мост между теорией и экспериментом, он предположил, что “в природе могут иметь место только те экспериментальные ситуации, которые можно описать с помощью математического формализма” квантовой механики42. Гейзенберг был убежден, что если квантовая механика говорит, что такого быть не может, то это действительно так. “Физическая интерпретация квантовой механики все еще полна внутренних противоречий, — написал он в статье, посвященной принципу неопределенности, — которые проявляются в спорах о сопоставлении непрерывности и разрывов, частиц и волн”43. Сложилась неприятная ситуация. Оказалось, что понятия, лежащие в основании классической физики еще со времен Ньютона, на атомном уровне “не совсем точно подходят природе”44. Гейзенберг верил, что при более аккуратном анализе таких понятий, как координата, импульс, скорость и траектория электрона или атома, можно будет избавиться от “очевидных и сейчас противоречий в физических интерпретациях квантовой механики”45. — 177 —
|