В общих чертах стандартизация диагностической методики, ориентированной на норму, осуществляется путем проведения этой методики на большой репрезентативной выборке того типа, для которого она предназначена. Относительно этой группы испытуемых, называемой выборкой стандартизации, вырабатываются нормы, указывающие не только средний уровень выполнения, но и его относительную вариативность выше и ниже среднего уровня. В результате можно оценить разные степени успешности или неуспешности в выполнении диагностической пробы. Это позволяет определить положение конкретного испытуемого относительно нормативной выборки или выборки стандартизации (А. Анастази, 1982). Для вычисления статистической нормы психологи-диагносты обратились к давно применяемым в биологии приемам математической статистики. Рассмотрим пример. На призывной пункт явились несколько тысяч молодых людей. Допустим, что все они примерно одного возраста. Что мы получим при измерении их роста? Обычно оказывается, что большинство почти одного роста, совсем немного будет людей очень маленького и очень высокого роста. Остальные же распределятся симметрично, уменьшаясь по количеству от среднего максимума в ту и другую сторону. Распределение рассматриваемых величин — это нормальное распределение (или распределение по нормальному закону, кривая распределения Гаусса). Математики показали, что для описания такого распределения достаточно знать два показателя — среднюю арифметическую и так называемое стандартное отклонение, которое получается путем несложных вычислений. Назовем среднюю арифметическую х, а стандартное отклонение (J (сигма малая). При нормальном распределении все изучаемые величины практически находятся в пределах + 5 (J . Нормальное распределение обладает многими преимуществами, в частности оно позволяет заранее рассчитать, сколько случаев будет расположено в определенном удалении от средней арифметической при использовании для определения удаленности стандартного отклонения. Для этого имеются специальные таблицы. Из них видно, что в пределах х ± (J находится 68% изучаемых случаев. За этими пределами находится 32% случаев, а так как распределение симметрично, то по 16% с каждой стороны. Итак, преобладающая и наиболее представительная часть распределения находится в пределах x±G. Рассмотрим стандартизацию диагностической методики на примере тестов Стэнфорд—Вине. В группу испытуемых входили 4498 человек от 2,5 до 18 лет. Усилия стэнфордских психологов были направлены на то, чтобы распределение полученных по каждому возрасту данных о выполнении тестов было близко к нормальному. Этого результата удалось добиться далеко не сразу; в некоторых случаях ученым приходилось заменять одни задания другими. В конце концов работа была закончена, и были подготовлены тесты по каждому возрасту со средней арифметической, равной 100, и со стандартным отклонением, равным 16, с распределением, близким к нормальному. — 39 —
|