Энциклопедия философских наук. Том 1

Страница: 1 ... 163164165166167168169170171172173 ... 313

00.htm - glava20

Ь. Определенное количество

§ 101

Количество, существенно положенное с содержащейся в нем определенностью, исключающей все прочие, есть определенное количество (Quantum), ограниченное количество.

Прибавление. Определенное количество есть наличное бытие количества, а чистое количество соответствует, напротив, бытию, степень же (которая будет рассмотрена далее) — для-себя-бытию. Что же касается перехода от чистого количества к определенному количеству, то он имеет свое основание в том, что, в то время как в чистом количестве различие как различие между непрерывностью и дискретностью имеется лишь в себе, в определенном количестве это различие, напротив, положено, и положено так, что отныне количество вообще выступает как различенное или ограниченное. Но этим самым определенное количество распадается вместе с тем на неопределенное множество определенных величин. Каждая из этих определенных величин, как отличная от других, образует единство, точно так же, как и последнее, рассматриваемое для себя, есть многое. Но таким образом определенное количество определено как число.

§ 102

Определенное количество находит свое развитие и полную определенность в числе, которое подобно своему элементу — единице (Eins) — содержит в себе как своп качественные моменты множество (Anzahl) со стороны момента дискретности и единство (Einheit) — со стороны момента непрерывности.

Примечание. В арифметике обычно формы исчисления даются как случайные способы действия над числами,

==247


Если есть необходимость и смысл в этих действиях, то этот смысл заключается в некоем принципе, а последний может лежать лишь в тех определениях, которые содержатся в самом понятии числа; мы здесь вкратце укажем этот принцип. Определения понятия числа суть определенное множество и единство (Einheit), а само число есть единство (Einheit) их обоих. Но единство в применении к эмпирическим числам есть только их равенство; таким образом, принцип арифметических действий должен состоять в том, что числа ставятся в отношение единства и определенного множества и устанавливается равенство этих определений.

Так как сами единицы (die Eins) или сами числа безразличны. друг к другу, то единство (die Einheit), в которое они приводятся, вообще имеет видимость внешнего сочетания. Исчислять — значит поэтому вообще считать, и различие способов исчисления зависит только от качественного характера чисел, а принципом этого последнего являются определения единства и множества.

Нумерация есть первое действие, это — составление числа вообще, сочетание скольких угодно единиц. Но арифметическое действие есть исчисление и сочетание не просто единиц, а того, что уже представляет собой .число.

— 168 —
Страница: 1 ... 163164165166167168169170171172173 ... 313