К концу IV в. до нашей эры центр математической науки переместился в Александрию. Город был основан Александром в 332 г. и быстро стал одним из основных торговых городов Средиземноморья. Являясь воротами в восточные земли, он осуществлял связь между Западом и культурами Вавилона и Персии. За короткий срок здесь возникла большая иудейская община, которая быстро эллинизировалась. Ученые из Греции выстроили школу и библиотеку, ставшие знаменитыми во всей античности. Не было другого собрания книг, которое могло бы соперничать с собранным в Александрии. К несчастью, этот уникальный источник древней науки и философии сгорел, когда легионеры Юлия Цезаря взяли город в 47 г. до нашей эры Именно в это время было непоправимо потеряно огромное количество материалов великих авторов классического периода. Без сомнения, сгорело также многое, имеющее меньшую ценность. Но это не может служить утешением, когда сгорают библиотеки. Теория пропорций, изложенная Евклидом из Александрии. Самый известный из александрийских математиков — Евклид, который преподавал около 300 г. до нашей эры Его "Начала" остаются одним из величайших памятников греческой науки. Здесь изложено в дедуктивной манере геометрическое знание того времени. Многое у Евклида не является его собственным изобретением, но ему мы обязаны систематизированным представлением о предмете. "Начала" в течение веков являлись примером, который многие старались достигнуть. Когда Спиноза выдвинул свою этику, "более геометрическую", именно Евклид служил моделью, и то же касается "Принципов" Ньютона. Одной из проблем, за которую, как мы видели, активно взялись более поздние пифагорейцы, было построение иррациональных чисел как ограничивающих значений последовательностей бесконечных делений. И тем не менее полностью арифметическая теория этой проблемы так и не была сформулирована. В результате этого объяснение пропорций не могло быть разработано в арифметических терминах, поскольку оставалось невозможным дать иррациональному, или неизмеряемому, числу числовое название. С длинами дело обстоит иначе. Действительно, трудность впервые была обнаружена при попытке вычислить гипотенузу равнобедренного прямоугольного треугольника с длиной стороны в одну единицу. Следовательно, полностью сформировавшаяся теория пропорций появилась в геометрии. Ее открытие принадлежит, кажется, Евдоху, современнику Платона. В форме, в которой эта теория дошла до нас, она изложена у Евклида, где весь вопрос освещен с замечательной ясностью и строгостью. Окончательный возврат к арифметике произошел с открытием примерно две тысячи лет спустя аналитической геометрии. Когда Декарт предположил, что геометрия может быть представлена средствами алгебры, он стремился фактически к научному идеалу Сократовой диалектики. Опровергая определение теории в геометрии, он нашел более общие принципы, на которых она должна быть основана. Точно такую же цель преследовали — насколько успешно, мы никогда не узнаем — математики Академии. — 113 —
|