Что же, геометрически говоря, значит изобразить некоторую реальность? Это значит привести точки воспринимаемого пространства в соответствие с точками некоторого другого пространства, в данном случае — плоскости. Но действительность по меньшей мере трехмерна, — даже если забыть о четвертом измерении, времени, без которого нет художества, — плоскость только двухмерна. Возможно ли такое соответствие? Возможно ли четырехмерный или, скажем для простоты, трехмерный образ отобразить на двухмерном протяжении, хватит ли в последнем точек, соответственных точкам первого, или, математически говоря: мощность образа трехмерного и таковая же двухмерного могут ли быть сравнимы? — Ответ, естественно напрашивающийся на ум — «Конечно, нет», — «Конечно, нет, ибо в трехмерном образе — бесконечное множество двухмерных разрезов, и, следовательно, мощность его бесконечно больше мощности каждого отдельного разреза». Но внимательное обследование поставленного вопроса в теории точечных множеств показывает, что он не так-то прост, как это представляется с первого взгляда, и более того, что данный выше ответ, по-видимому естественный, не может быть признан правильным. Определеннее: мощность всякого трех- и даже многомерного образа точно такая же, как и мощность любого двух- и даже одномерного образа. Изобразить четырех- или трехмерную действительность на плоскости можно, и можно даже не только на плоскости, но и на любом отрезке прямой или кривой линии. При этом такое отображение возможно установить бесчисленным множеством, как арифметическим или аналитическим, так и геометрических соответствий. Типом первого может служить прием Георга Кантора , а вторых — кривая Пэано или кривая Гильберта [100]. Чтобы пояснить суть этих исследований с их неожиданными результатами возможно проще, ограничимся случаем изображения квадрата со стороною в одну единицу длины на прямолинейном отрезке, равным стороне вышеозначенного квадрата, — т.е. случаем изображения всего квадрата на его собственной стороне; все другие случаи довольно легко могут быть рассмотрены по образцу этого. Так вот, Георг Кантор указал аналитический прием, при помощи которого устанавливается соответствие между каждой точкой квадрата и каждой точкой его стороны: это значит, что если нам определено, двумя координатами x и y , местоположение в любой точке квадрата, то некоторым единообразным приемом мы отыщем координату z , определяющую некоторую точку стороны квадрата, изображение вышеозначенной точки самого квадрата; и наоборот, если указана произвольная точка на отрезке — изображении квадрата, то отыщется и изображаемая этою точкою точка самого квадрата. Таким образом, ни одна точка квадрата не остается неотображенной, и ни одна точка изображения не будет пустой, ничему не соответствующей: квадрат будет отображен на своей стороне. Подобно может быть изображен на стороне квадрата или на самом квадрате — куб, гиперкуб и вообще квадратовидное геометрическое образование (полиэдроид, многоячейник) любого и даже бесконечно большого числа измерений. А говоря общее: любое непрерывное образование любого числа измерений и с любым ограничением может быть отображено на другом любом образовании, тоже с любым числом измерений и тоже с любым ограничением; все что угодно в геометрии может быть отображено на всем что угодно. — 42 —
|