Понятие дедукции является общеметодологическим. В логике ему соответствует понятие доказательства. Доказательство обычно определяется как процедура обоснования истинности некоторого утверждения путем приведения тех истинных утверждений, из которых оно логически следует. Это определение включает два центральных понятия логики: истина и логическое следование. Оба эти понятия не являются в достаточной мере ясными, и значит, определяемое через них понятие доказательства также не может быть отнесено к ясным. Многие наши утверждения не являются ни истинными, ни ложными, лежат вне «категории истины». К ним относятся требования, предостережения и т.п. Они указывают, какой данная ситуация должна стать, в каком направлении ее нужно преобразовать. От описаний мы вправе требовать, чтобы они являлись истинными. Но удачный приказ, совет и т.д. мы характеризуем как эффективный или целесообразный, но не как истинный. В стандартном определении доказательства используется понятие истины. Доказать некоторый тезис — значит логически вывести его из других, являющихся истинными положений. Но, как мы видим, есть утверждения, не связанные с истиной. Очевидно также, что, оперируя ими, нужно быть и логичным, и доказательным. Таким образом, встает вопрос о существенном расширении понятия доказательства. Оно должно охватывать не только описания, но и утверждения типа оценок и норм. Задача переопределения доказательства пока не решена ни логикой оценок, ни логикой норм. В результате понятие доказательства остается не вполне ясным по своему смыслу[64]. Не существует, далее, единого понятия логического следования. Это понятие определяется через закон логики: из утверждения (или системы утверждений) А логически следует утверждение В в том и только том случае, когда выражение «если А, то В» представляет собой закон логики. Это определение — только общая схема бесконечного множества возможных определений. Конкретные определения логического следования получаются из нее путем указания логической системы, задающей понятие логического закона. Логических же систем, претендующих на статус закона логики, в принципе бесконечно много. Хорошо известны, в частности, классическое определение логического следования, интуиционистское его определение, определение следования в релевантной логике и др. Однако ни одно из имеющихся в современной логике определений логического закона и логического следования не свободно от критики и от того, что можно назвать «парадоксами логического следования». В частности, классическая логика говорит, что из противоречия логически следует все, что угодно. Например, из противоречивого утверждения «Токио — большой город, и Токио не является большим городом» следуют, наряду с любыми другими, утверждения: «Математическая теория множеств непротиворечива», «Луна сделана из зеленого сыра» и т.п. Но между исходным утверждением и этими, якобы вытекающими из него утверждениями нет никакой содержательной связи. Здесь явный отход от обычного, или интуитивного, представления о следовании. Точно также обстоит дело и с классическим положением, что логические законы вытекают из любых утверждений. Наш логический опыт отказывается признать, что, скажем, утверждение «Лед холодный или лед не холодный» можно вывести из утверждений типа «Два меньше трех» или «Аристотель был учителем Александра Македонского». Следствие, которое выводится, должно быть как-то связано по своему содержанию с тем, из чего оно выводится. Классическая логика пренебрегает этим очевидным обстоятельством. — 48 —
|