Развитие техники, повышение требований к научным экспериментам диктовали необходимость введения более жестких стандартов. Поэтому в 1956 году Международное бюро мер и весов дает новое определение секунды: «Секунда есть 1/31556925,9747 доля тропического года для 1900 г. январь 0, в 12 часов эфемеридного времени». Изобретение атомных стандартов времени и частоты позволило получить более точную шкалу времени, уже независящую от вращения Земли и имеющую значительно большую стабильность. В качестве единицы атомного времени принята атомная секунда, определяемая как «время, равное 9192631770 периодам излучения соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133»[59]. Это определение принято на XIII Генеральной конференции по мерам и весам. Относительная погрешность атомных часов колеблется от 10^–13 до 10^–14 . Уже здесь закладывается фундамент всех дальнейших несоответствий. Длительные события измеряются десятилетиями, веками, миллениумами, миллионолетиями и так далее. Здесь же в основе лежит астрономический год – один оборот Земли вокруг Солнца. Но за длительный срок само Солнце проходит большой путь вокруг центра Галактики, пересекает, возможно, неоднородные области ее пространства с разной концентрацией масс. Словом, в течение этого пути могут произойти довольно существенные деформации того временного потока, который мы пытаемся градуировать и измерить. Поэтому утверждать, что один год всегда в точности равен другому мы не можем. Тем более мы не можем утверждать, что количество атомных секунд, в сумме составляющих, скажем, 1967 астрономический год, будет равно количеству секунд, которые составят, предположим, 25067 астрономический год, или составляли – астрономический же – 25067 год до н э. Правда, здесь можно возразить тем, что погрешность будет очень незначительна. Но, во‑первых, никаких гарантий точности здесь, разумеется, не может быть и в помине. Во‑вторых, мы говорим не о степени физической точности, но о точности логической. Физическая погрешность всегда относительна и в известных пределах, там, где она, перефразируя Эйнштейна, не выходит за пределы шестого знака после запятой, ею можно пренебречь. Погрешность логическая – всегда абсолютна, и сколь бы микроскопичной она ни была, пренебрегать ею абсолютно недопустимо. Здесь же логическая погрешность состоит в том, что используются градационные шкалы, призванные дифференцировать принципиально разные качества. (О существе этого замечания мы уже говорили там, где речь шла о законе перехода количественных изменений в качественные.) А это значит, что они не вправе подменять друг друга. Там же, где подмена все‑таки происходит, необходимо помнить, что результаты измерений всегда будут содержать в себе не только относительную погрешность, обусловленную особенностями инструмента и самой процедуры измерений, но и гораздо более фундаментальные эффекты, которые связаны с подменой качественных оснований, иными словами, с принципиальной методологической ошибкой. — 126 —
|