Разбрасываю мысли

Страница: 1 ... 6566676869707172737475 ... 272

Для оценки языка могут использоваться только тексты, построенные на этом языке. Если они окажутся существенно интересными, то язык приобретет право на существование, хотя при этом никак не отрицается возможность появления других языков.

Текстами, полученными Л.Л. Численко, являются функции распределения. Они безусловно интересны. Рассмотрим их, хотя бы вкратце.

На рис. 1 и 2 приведены два семейства кривых, полученных автором. Это типичные семейства. Вот как сам автор комментирует их [Численко, 1981]:

В огромном большинстве случаев распределение числа видов (если оно достаточно велико) в пределах таксонов более высокого ранга на логарифмической шкале имеет вид симметричной кривой и, насколько можно судить, не противоречит мнению А.М. Геммингсена о логарифмически нормальном распределении [Hemmingsen, 1934]. В настоящей работе приведена лишь небольшая часть полученных нами распределений главным образом из-за недостатка места. Естественно, что при небольшом числе видов в таксоне могут встретиться самые различные формы распределения просто в силу недостаточности материала. При значительном числе видов для таксонов невысокого ранга (родов, семейств) симметрия распределения выражена особенно хорошо. Распределение видов внутри таксонов высокого ранга чаще всего также симметрично или приблизительно симметрично, что в общем подтверждается всем рассмотренным материалом (с. 182).

Рис. 1. Процентное распределение числа (N) родов, взвешенного числом составляющих их видов, в зависимости от длины тела (L) для различных групп мировой фауны млекопитающих: А – по длине тела, Б – то же с поправкой на вес: 1 – Rodentia , 2 – Carnivora , 3 – Chiroptera , 4 – Pinnipedia , 5 – Insectivora , 6 – Primates , 7 – Marsupialia , 8 – Artiodactyla , 9 – Cetacea , 10 – Lagomorpha , 11 – Edentatа.

Рис. 2. Процентное распределение числа (N) видов некоторых групп одноклеточных организмов в зависимости от приведенных линейных размеров l : 1 – пресноводные водоросли, 2 – Radiolaria , 3 – Foraminifera , 4 – обобщенная кривая: свободноживущие Ciliata , морские пелагические Flagellata , морские пелагические Diatomea, Testacea , пресноводные Amoebina , паразитирующие на пресноводных рыбах СССР Protozoa.

И еще одно интересное наблюдение делает автор относительно упорядоченности размеров:

Под упорядоченностью отношения размеров всегда понимается расположение кривых или средних на определенных расстояниях друг от друга на логарифмической шкале размеров группами или поодиночке. Причем расстояние между ними лежит в диапазоне 0,45 – 0,60 логарифмических единиц и в среднем равно 0,50 единиц. Как правило, границы указанного диапазона ?же. Мы не ставим задачу исследования природы обнаруженной константы. Это возможно только при условии достаточно полного обзора материала, в котором данная константа обнаруживается. В настоящем материале она касается только размеров тела и выражает «биотаксологические» отношения: иначе говоря, выявляется только специфическим методом взвешивания рассматриваемого признака числом таксонов, у которых этот признак проявляется. В нашем распоряжении имеется значительный материал, показывающий, что выявляемая данным методом константа 0,50 логарифмических единиц не связана обязательно и исключительно с размерами тела. Она выявляется и при анализе формы тела, плодовитости и числа таксонов. Соответствующие данные публикуются. Возможно, что и ряд других свойств обнаружит при «биотаксологическом» анализе ту же константу. Общий анализ относящихся к этой проблеме данных еще впереди. Что касается числового значения константы, то не исключена возможность, что оно связано с числом ? , поскольку величина 0,50 логарифмических единиц равна логарифму числа ? с точностью до второго знака. Однако мы не располагаем пока достаточными доказательствами наличия такой связи (с. 185–186).

— 70 —
Страница: 1 ... 6566676869707172737475 ... 272