Есть, впрочем, еще одна возможность приблизиться к числовому представлению канона Поликлета. Дело в том, что Поликлет прочно связан с пифагорейской традицией. От пифагорейцев же идет теория так называемого золотого деления (вся длина так относится к большей части, как большая к меньшей). Если считать Поликлетова Дорифора выразителем его канона, то установлено, что весь его рост относится к расстоянию от пола до пупка, как это последнее расстояние - к расстоянию от пупка до макушки. Установлено, что если взять расстояние от пупка до макушки, то оно так относится к расстоянию от пупка до шеи, как это последнее - к расстоянию от шеи до макушки, и если взять расстояние от пупка до пяток, то золотое деление падет тут на коленки{50}. Витрувий (III 1, 3) утверждает, что если провести круг из человеческого пупка как центра, когда человек распростерт на земле с максимально раскинутыми ногами и руками, то окружность пройдет как раз через крайние точки всех конечностей. Он при этом не говорит, что здесь образуется пентаграмма; но она фактически образуется. А пентаграмма, как об этом говорится во множестве работ по искусству, построена именно по закону золотого деления. Это весьма немаловажное обстоятельство способно наводить на большие размышления, и хотя точных данных к такому пониманию числовой природы канона Поликлета не имеется, все же вероятность его огромна и эстетическая значимость его почти очевидна. 7. Культурно-стилевая оценка "Канона" Поликлета Предыдущие тексты дают исчерпывающий филологический материал по канону Поликлета. Вместе с тем мы уже дали и общую оценку этого канона. Сформулируем теперь в обобщенном виде то, что можно было сказать о культурно-стилевом характере этого явления в целом. а) Прежде всего в эпоху классического идеала понимать канон чисто арифметически и вычислительно было невозможно. - Чистая арифметически-вычислительная методика характеризует эпохи гораздо более мелкого подхода к искусству, эпохи внешнетехнического отношения к нему на основе бессильно-рационалистической импотентной настроенности субъекта, лишенного крупных идей. Классическое эллинство гораздо более энергично и мощно, гораздо более онтологично. Числовое оформление для него есть также бытийственное оформление, число здесь вещественно или, по крайней мере, бытийственно. Вот почему числа этого канона не могут быть счетными количествами в нашем смысле слова. Эти числа являются тут субстанциями, живыми силами, вещественно-смысловыми энергиями. Такова вообще вся природа классического идеала. Интересно, что легкий налет этого философского онтологизма и динамизма лежит даже на позитивистских в своем существе числовых рассуждениях и операциях теоретиков эпохи Возрождения. — 226 —
|