Ранняя классика

Страница: 1 ... 194195196197198199200201202203204 ... 416

И у Платона, и у пифагорейцев, и у неоплатоников диада (или, как часто у них говорится, "неопределенная диада") есть принцип становления, в отличие от нестановящегося и устойчивого бытия, которое они называют "монадой". Однако становление это не нужно понимать в том отвлеченном смысле, как это понимается в новейшей философии. У греков диада еще слабо отличается от телесного или геометрического перехода от одной точки пространства к его другой точке. Но мало и этого. С понятием диады греки объединяли переход от одного измерения пространства к другому, т.е. от точки к линии, от линии к плоскости, к трехмерному телу. Дальнейшие эти свойства трехмерного тела тоже появлялись в результате применения обычной диады. Поэтому если от трехмерного тела вообще переходили, например, к теплому или холодному трехмерному телу, то получение и этого нового свойства тела тоже мыслилось в результате того становления, которое определялось все тем же принципом диады. Итак, античную диаду надо понимать не отвлеченно, а вполне материально, что тоже глубочайшим образом соответствует стихийному материализму древних.

Следовательно, если в приведенном тексте Платона речь идет о пропорциональности переходов от одного пространственного измерения к другому и если измерения эти надо понимать также и в широко качественном смысле, то эстетический смысл приведенного текста должен свидетельствовать о живой и как бы одушевленной структуре предмета, в котором все определяется не просто количественным способом, а в котором единая пропорциональность царит во всех его проявлениях. Предмет может быть бесконечно разнообразен; но в нем должна быть некая единая структура, пропорционально охватывающая собою все его бесконечно разнообразные проявления. Так следует понимать этот трудный и обычно механически переводимый текст Платона.

Приведенный отрывок содержит, однако, еще одну мысль, содержащую чисто арифметическое понимание пропорции. Оказывается, когда уже дано то или иное пространственное измерение (например, прямая), то мы можем в его пределах находить и более сложную пропорцию. А именно, взявши отрезок прямой, мы можем выбрать между ее концами такие две точки, которые будут делить весь отрезок по-разному, но которые содержат единство своего отношения к его концам. Так, возьмем числа 6, 8, 9, 12. Тут, с одной стороны, в одинаковом отношении к 6 и 12 находится число 8, так как 8 превосходит 6 на ту же долю числа 6, на какую долю числа 12 это 8 превосходится числом 12. С другой стороны, в аналогичном отношении к 6 и 12 находится также и число 9, хотя это отношение и не адекватно первому. А именно, 9 на столько же единиц превосходит 6, на сколько само превосходится числом 12, т.е. находится ровно посредине между ними. Первое отношение 4/3, второе - 3/2.

— 199 —
Страница: 1 ... 194195196197198199200201202203204 ... 416