1. Научные символы. Уже элементарный логический анализ всякого научного построения с полной убедительностью свидетельствует о том, что он никак не может обойтись без символических понятий. Самая точная из наук, математика, дает наиболее совершенные образы символа. Отрезок прямой только людям невежественным в математике представляется в виде какой-то палочки определенной длины с возможностью делить ее на известное количество частей. На самом же деле, поскольку множество всех действительных чисел, согласно основному учению матема(155)тики, .обладает мощностью континуума и поскольку отрезок прямой содержит в себе именно множество точек, соответствующее множеству всех действительных чисел, необходимо признать, что конечный отрезок прямой в таком понимании является символом получения множества всех действительных (то есть всех рациональных и всех иррациональных) чисел, или, вернее, одним из символов бесконечности. Уже всякое рациональное число в арифметике только при грубом употреблении его в качестве орудия счета не обнаруживает своего символического функционирования. Теоретически и научно всякое число даже просто натурального ряда предполагает целую бесконечность дробей, отделяющих его от соседнего числа. Всякие иррациональные числа вроде , — тоже есть символы в нашем смысле слова, поскольку всякое иррациональное число есть только известный метод порождения бесчисленного количества десятичных знаков. Всякая функция, разлагаемая в бесконечный ряд, тоже есть символ в нашем смысле слова. Ни одна категория математического анализа не обходится без последовательного применения понятия символа. Таковы прежде всего категории дифференциала и интеграла, тоже построенные на получении тех или других величин в результате их непрерывного движения к пределу по определенному закону. В геометрии каждый тип пространства строится тоже по определенному закону, который является для всякого пространства его символом. Таково пространство гиперболическое, параболическое, сферическое. Но если зашла речь о геометрии, то для иллюстрации понятия символа вовсе не обязательно оперировать категориями высшей геометрии, и в частности разными типами пространства. Достаточно базироваться уже на элементарной геометрии для того, чтобы не только констатировать наличие здесь символов как бесконечных рядов, но чтобы эти символы даже и представить себе вполне наглядно, вполне, можно сказать, зрительно. Если мы имеем, например, прямоугольный треугольник, то квадрат гипотенузы равняется, как известно, сумме квадратов обоих катетов. Следовательно, если, например, длина каждого катета равняется единице, то гипотенуза будет равняться квадратному корню из двух. Это значит, во-первых, то, что гипотенуза, в нашем смысле слова, есть символ, поскольку она является порождающей моделью для единицы с бесконечным числом десятичных знаков. А во-вторых, эта неисчислимая бездна иррациональности совершенно просто и наглядно видна нашему глазу в виде простой гипотенузы. — 125 —
|