Если теперь перейти к 31 теореме I книги, то при всей видимой взаимной изоляции этих теорем более тщательное исследование свидетельствует о самой настоящей понятийной системе, направленной к тому, чтобы уточнить сформулированную выше непрерывность и подготовить логический материал, необходимый для диалектики круга, которая развивается во II книге. Прежде всего, всякая непрерывность не есть просто неразличимая в себе сплошность, так как иначе она превратилась бы в непознаваемый и сплошной туман неизвестно чего. Непрерывность, конечно, предполагает раздельность, так что составляющие ее точки, конечно, не совпадают одна с другой, поскольку иначе непрерывность перестала бы быть протяженностью. В общей форме об этом говорят уже первые две теоремы (1-2). Специально говорится также и о бесконечной делимости времени и пространства (11), равно как и движения (19). Но бесконечная делимость - это раз. Тут же, однако, следуют и две теоремы, утверждающие обязательную функцию также и неделимости, сплошности. Ведь если мы имеем две точки на прямой, которые только разделены и никакого непрерывного перехода от одной к другой не допускают, то это вообще не будет двумя точками, поскольку они сольются в одну (3). А кроме того, если понимать переход от одной точки к другой как наличие какой-то еще третьей точки между ними, тогда тоже нельзя сказать, что наши две первоначальные точки непосредственно следуют одна за другой. Поэтому только полная непрерывность, лишенная всяких раздельных точек, может обеспечить позицию двух разных точек на прямой и возможность перехода от одной к другой (4). Итак, непрерывность есть в одно и то же время как раздельность составляющих ее точек, так и их сплошность, нераздельность и, следовательно, неразличимость. Но тогда возникает вопрос: как же это возможно, чтобы в сфере непрерывности составляющие ее точки и различались и не различались? Поскольку у Прокла здесь даются только раздельные тезисы, то логический переход от одного тезиса к другому специально не формулируется. Но то, что мы находим у Прокла в дальнейшем изложении, как раз и есть ответ на поставленный сейчас вопрос о слиянии раздельности и нераздельности. Именно подчеркнув еще раз, что всякая непрерывность дробима до бесконечности (5-10), а следовательно, и время, пространство и движение (11), и что, следовательно, из одних только взаимно изолированных точек нельзя получить непрерывную величину, Прокл тут же (15-16) вслед за Аристотелем (Phys. VI 3, 234 а 5-24) яснейшим образом трактует о "теперь", то есть о таком настоящем, которое само по себе неделимо, но вместе с тем содержит в себе элементы прошедшего и будущего и без них немыслимо. Это является полным контрастом тому изолированному пониманию конечности и бесконечности, которые Прокл перед этим формулирует. Оказывается, если конечность брать отдельно от бесконечности, а бесконечность отдельно от конечности, то ни бесконечное пространство нельзя будет пройти в конечное время (12), ни конечный промежуток пространства нельзя будет проходить в течение бесконечного времени (13). Но в таком случае придется вообще отрицать возможность неделимой величины, в то время как все величины не только делимы до бесконечности, но обязательно в то же самое время и неделимы, так как иначе будет непонятно, о делимости какой же именно вещи идет речь (14). — 152 —
|