Теперь спрашивается, почему же Птолемей, отождествивший, казалось бы, Землю с точкой по сравнению с универсумом, не сделал отсюда вывода о бесконечности последнего: ведь точка не имеет измерений, и по сравнению с ней всякое тело (в данном случае тело универсума) является бесконечным. Тут все дело в том, что Птолемей принимал Землю практически равной точке, поскольку все те приборы, которыми он пользовался для измерений (он говорит о них в приведенном выше отрывке), не улавливали и не могли уловить того различия в положении небесных тел, которое должно было бы иметь место, если бы размеры Земли оказывали существенное влияние на положение и видимые движения небесных тел. Не случайно с самых древних времен астрономию отличали от остальных математических наук (арифметики, геометрии, стереометрии): некоторые ее допущения, притом очень важные, имели не чисто теоретическое, а в известной мере "практическое" значение, поскольку зависели от точности измерительных приборов. Иными словами, эти допущения носили принципиально приблизительный характер, чего категорически не допускала математика древних, как мы ее находим в "Началах" Евклида. Позицию Птолемея в этом вопросе нам может в определенной степени прояснить Архимед. Как математик Архимед вполне недвусмысленно отвергает допущение (приписываемое древними источниками Аристарху Самосскому), что радиус земной орбиты так же относится к радиусу сферы неподвижных звезд, как центр сферы - к ее поверхности. Аргументация Архимеда нам здесь особенно интересна, так как Коперник ведь защищает именно это допущение Аристарха. "Аристарх Самосский, - пишет Архимед, - выпустил в свет книгу о некоторых гипотезах, из которых следует, что мир гораздо больше, чем понимают обычно. Действительно, он предполагает, что неподвижные звезды и Солнце находятся в покое, а Земля обращается вокруг Солнца по окружности круга, расположенной посредине между Солнцем и неподвижными звездами, а сфера неподвижных звезд имеет тот же центр, что и у Солнца, и так велика, что круг, по которому, как он предположил, обращается Земля, так же относится к расстоянию неподвижных звезд, как центр сферы к ее поверхности. Но хорошо известно, что это невозможно: так как центр сферы не имеет никакой величины, то нельзя предполагать, чтобы он имел какое-нибудь отношение к поверхности сферы. Надо поэтому думать, что Аристарх подразумевал следующее: поскольку мы подразумеваем, что Земля является как бы центром мира, то Земля к тому, что мы назвали миром, будет иметь то же отношение, какое сфера, по которой, как думает Аристарх, обращается Земля, имеет к сфере неподвижных звезд". — 48 —
|