Интеллектуальные уловки

Страница: 1 ... 90919293949596979899100 ... 226

Мы противопоставляем dx — не-А, как символ различия (Differenz-philosophie) — противоречию, точно так же, как само различие — негативности. Верно, что противоречие ищет Идею в области самого большого различия, в то время как дифференциалу угрожает упасть в пропасть бесконечно малого. Но в таком ее виде проблема поставлена неудачно: неверно связывать значение символа dx с существованием бесконечно малых; но неверно также и отказывать ему во всяком онтологическом или гносеологическом значении, обвиняя последние. […] Принцип дифференциальной философии вообще должен быть объектом точного представления и не зависеть ни в чем от бесконечно малых183. Символ dx является одновременно как неопределенный, как определимый и как определение. Этим трем аспектам соответствуют три принципа, образующие достаточное основание: неопределенному как таковому (dx, dy) соответствует принцип определимости; реально определимому (dy/dx) соответствует принцип взаимоопределения; эффективно определимому (значения dy/dx) соответствует принцип полного определения. Одним словом, dx — это Идея — платоновская, лейбницеанская или кантианская Идея, «проблема» и ее бытие. (Делез 1968а, с. 221–222, выделено автором)

Дифференциальное отношение представляет наконец третий элемент — чистую потенциальность. Степень — форма взаимоопределения, согласно которому переменные величины принимаются как функции друг друга; и исчисление рассматривает лишь те величины, из которых хотя бы стоит в большей степени, чем другая184. А первое действие исчисления, несомненно, состоит в «депотенциализации» уравнения (например, вместо 2ах — х'' = у'' мы имеем dy/dx = (a — x)/y ). Аналогичное уже встречалось в двух предыдущих примерах, где исчезновение quantum и quantitas было условием для появления элемента количественноети, а дисквалификация — условием появления элемента качественности. На этот раз депон-тециализация обусловливает, по представлению Лагранжа, чистую потенциальность, допуская разложение функции одной переменной в ряды, составленную из степеней некоторой i (неопределенное количество) и коэффициентов этих степеней (новые функции от х ) таким образом, что функция разложения этой переменной будет сравнима с другими функциями других переменных. Чистый элемент потенциальности появляется в первом коэффициенте или первой производной, все другие производные и, как следствие, члены ряда являются результатом повторения тех же операций; но проблема и состоит в том, чтобы определить этот первый коэффициент, сам по себе не зависимый от i 185. (Делез 1968а, с. 226–227, выделено автором)

— 95 —
Страница: 1 ... 90919293949596979899100 ... 226