Интеллектуальные уловки

Страница: 1 ... 2526272829303132333435 ... 226

Следовательно, ПЯ не может быть субкодом. Он является бесконечным упорядоченным кодом, комплементарной системой кодов, из которой можно выделить (абстракцией, действующей в качестве доказательства некоей теоремы) обыденный язык, научный метаязык и все искусственные системы знаков — и все они оказываются лишь подмножествами этой бесконечности, экстериоризирующими правила своего порядка на ограниченном промежутке (их мощность поэтому меньше мощности ПЯ, который надъективен по отношению к ним). (Кристева 1969, с. 178–179)

Эти абзацы лишены всякого смысла, хотя Кристева довольно-таки ловко связывает между собой математические термины. Но дальше — больше:

Допустив, что поэтический язык является формальной системой, построение теории которой может вестись при помощи теории множеств , мы в то же время вправе заметить, что функционирование поэтического значения подчиняется принципам, на которые указывает аксиома выбора. Она утверждает, что существует однозначное соответствие, представленное определенным классом, который соединяет с каждым из непустых множеств теории (системы) один из своих элементов.

(?А) [Un (A) (x) [~Em (x) ? (?y) [y?x?yx? ?A]]]

[Un (A) — «A однозначно»; Em (x) — «класс x» — пуст.]

Иначе говоря, можно одновременно выбрать один элемент в каждом из непустых множеств, которыми мы занимаемся. В таком изложении аксиома выбора применима в нашем универсуме? входящем в ПЯ. Аксиома уточняет, почему любая последовательность x содержит послание книги. (Кристева 1969, с. 189, курсив в оригинале)

Эти абзацы (так же, как и следующие за ними) служат блестящей иллюстрацией жестоким словам социолога Станислава Андрески, которые мы процитировали во введении (с. 24). Кристева не дает никакого объяснения тому, какое значение аксиома выбора может иметь для лингвистики (мы думаем, что никакого). Аксиома выбора гласит, что, если мы имеем собрание множеств, из которых каждое содержит по крайней мере один элемент, тогда существует множество, которое содержит в точности один элемент, выбранный в каждом из отправных множеств. Эта аксиома позволяет утверждать существование определенных множеств без их явного задания (ведь не указывается, как произведен «выбор»). Введение этой аксиомы в математическую теорию множеств мотивировано изучением бесконечных множеств или бесконечным собранием множеств. А где мы найдем такие множества в поэзии? Говорить, что аксиома выбора «уточняет, почему любая последовательность содержит послание книги» — это абсурд, и мы не знаем, что больше извращено в этом высказывании — математика или литература. Тем не менее, Кристева продолжает:

— 30 —
Страница: 1 ... 2526272829303132333435 ... 226