Интеллектуальные уловки

Страница: 1 ... 1314151617181920212223 ... 226

В тексте, который, как вы увидите, является продолжением моего прошлогоднего выступления, я, по моему мнению, доказываю точную эквивалентность топологии и структуры17. Если следовать вышеизложенному, то обнаружится, что отличие анонимности того, о чем говорят как о наслаждении, то есть о том, что упорядочивается правом, состоит как раз в геометрии. Геометрия — это гетерогенность места, а именно, существование места Другого18. Что позволяют нам сказать об этом месте Другого, о поле как Другом, как абсолютно Другом, самые последние достижения топологии?

Здесь я предлагаю ввести термин «компактность»19. Не может быть ничего компактнее зазора, если понять, что, допуская существование пересечения всего того, что закрывается, на бесконечном числе множеств, мы приходим к выводу, что пересечение включает в себя это бесконечное число. Это и есть определение компактности. (Лакан 1975а, с. 14)

Вовсе нет: хотя Лакан использует много ключевых слов математической теории компактности (см. сноску 19), он, произвольно смешивая их, менее всего озабочен их значением. Его «определение» не просто неверно: оно вообще лишено всякого смысла. Кроме того, его «самые последние достижения топологии» относятся к 1900–1930 годам.

Лакан продолжает следующим образом:

Это пересечение, о котором я говорю, является тем, что я только что ввел в качестве того, что покрывает, что создает препятствия для предполагаемого сексуального отношения.

Только предполагаемого, поскольку я говорю, что аналитический дискурс поддерживается лишь тем тезисом, что сексуального отношения нет, что его невозможно установить. Именно в этом заключается прорыв аналитического дискурса, и именно из этой точки он определяет, каков реальный статус других дискурсов.

Таков, если его называть, пункт, покрывающий невозможность сексуального отношения как такового. Наслаждение как таковое фаллично, то есть оно не относится к Другому как таковому.

Проследим теперь за этим дополнением гипотезы компактности.

Формулу нам дает та топология, которую я охарактеризовал как самую позднюю по времени возникновения, поскольку она отправлялась от логики, построенной на исследовании числа, которое привело к заданию места, которое не является местом гомогенного пространства. Возьмем все то же ограниченное, закрытое, предположительно устойчивое место — эквивалент того, что я только что сказал о пересечении, расширяющемся до бесконечности. Если предположить, что оно покрыто открытыми множествами, то есть множествами, исключающими своей предел — предел, чтобы вам это вкратце напомнить, — это то, что определяется как большее одной точки и меньшее другой, но никогда не равное ни отправной точке, ни конечной20 — обнаруживается доказательство того, что равным образом можно сказать так: множество этих открытых пространств всегда поддается неполному покрытию открытыми пространствами, задающими конечность; то есть последовательность элементов задает конечную последовательность.

— 18 —
Страница: 1 ... 1314151617181920212223 ... 226