Для шкалы интервалов допустимо уже не любое монотонное преобразование, а только такое, которое сохраняет отношение разностей оценок, то есть линейное преобразование – умножение на положительное число и/или добавление постоянного числа. Например, если к значению температуры в градусах Цельсия добавить 2730С, то получим температуру по Кельвину, причем разности любых двух температур в обеих шкалах будут одинаковы. И, наконец, в наиболее мощной шкале – шкале отношений – возможны лишь только преобразования подобия – умножения на положительное число. Содержательно это означает, что, например, отношение масс двух предметов не зависит от того, в каких единицах измерены массы – граммах, килограммах, фунтах и т.д. Суммируем сказанное в Табл. 4, которая отражает соответствие между шкалами и допустимыми преобразованиями. Шкалы и допустимые преобразования
Как отмечалось выше, результаты любых измерений относятся, как правило, к одному из основных (перечисленных выше) типов шкал. Однако получение результатов измерений не является самоцелью – эти результаты необходимо анализировать, а для этого нередко приходится строить на их основании производные показатели. Эти производные показатели могут измеряться в других шкалах, нежели чем исходные. Например, можно для оценки знаний применять 100-балльную шкалу. Но она слишком детальна, и ее можно при необходимости перестроить в пятибалльную («1» – от «1» до «20»; «2» – от «21» до «40» и т.д.), или двухбалльную (например, положительная оценка – все, что выше 40 баллов, отрицательная – 40 и меньше). Следовательно, возникает проблема – какие преобразования можно применять к тем или иным типам исходных данных. Другими словами, переход от какой шкалы к какой является корректным. Эта проблема в теории измерений получила название проблемы адекватности. Для решения проблемы адекватности можно воспользоваться свойствами взаимосвязи шкал и допустимых для них преобразований, так как отнюдь не любая операция при обработке исходных данных является допустимой. Так, например, такая распространенная операция, как вычисление среднего арифметического, не может быть использована, если измерения получены в порядковой шкале [183]. Общий вывод таков – всегда возможен переход от более мощной шкалы к менее мощной, но не наоборот (например, на основании оценок, полученных в шкале отношений, можно строить балльные оценки в порядковой шкале, но не наоборот). — 72 —
|