Живой организм устроен иначе. В нем сравнительно немного, в миллиарды миллиардов миллиардов раз меньше клеток, чем атомов в одном грамме-моле неживого вещества. Еще меньше сложных образований — мышц, нервных сетей, органов, — и каждое из них н е п о х о ж е на другое. Живой организм — принципиально неоднородная структура, а это значит, что законы классической теории вероятностей к нему неприложимы. Попытка будет некорректной. Новая математика нужна для живого организма потому, что она, по справедливому замечанию Нильса Бора, вовсе не специальная область знаний, вытекающая только из опыта (это было справедливо лишь для элементарной алгебры и геометрии, адекватных со «здравым смыслом»): «Она больше похожа на разновидность общего языка, приспособленную для выражения соотношений, которые либо невозможно, либо сложно излагать словами». Какой же должна быть эта новая математика? Чтобы быть правильно понятым, Бернштейн предлагает ознакомиться с математической кухней. Она чрезвычайно проста, и многие математики искренне удивляются, почему это люди считают их науку трудной. Ведь в ней всего два класса понятий: номинаторы, то есть объекты (числа или буквенные и иные обозначения), над которыми производятся действия, и операторы — правила этих действий. Только и всего. Дальше уже начинаются всяческие построения, усложнения. Придумайте новый оператор (правда, это далеко не так легко), и вы сможете совершать действия над новыми, более сложными номинаторами. Те призовут к жизни еще более сложные операторы — и так без конца. Номинаторы в эпоху «золотого века» математики выглядели крайне просто. Настолько просто, что их очень наглядно изображали в виде графиков на плоскости, в крайнем случае — как перспективно-пространственные «нечто». Сама возможность так поступать — плод и з о б р е т е н и я Декарта, придумавшего систему прямоугольных координат и буквенные обозначения для номинаторов. Но уже пространства более высоких, чем третья, степеней (то есть требующие более трех координатных осей), — скажем, знаменитое четырехмерное «пространство время», придуманное Эйнштейном и Минковским, не представляется наглядно нашему воображению, привыкшему к трехмерному миру. Формула — пожалуйста, а картинка, образ — увы… Физики сетуют: «За каждый большой шаг в направлении теоретического синтеза нашего знания неизбежно приходится расплачиваться все большей и большей утратой интуитивной очевидности и наглядности, которые были столь привлекательны и характерны для построений классического механицизма». — 39 —
|