Пример II. В одном городе много чистильщиков обуви, хотя не все они сидят одинаково удачно. Один, сидящий у вокзала, постоянно загружен работой. Сидящие же на ближайших перекрестках часто скучают без клиентов. Но цена услуги у всех одна. Если бы привокзальный чистильщик повысил ее, его клиенты проходили бы мимо и пользовались услугами тех, кто сидит чуть подальше. Он не может влиять на цену. Кривая спроса на его услуги — это прямая, параллельная оси абсцисс. Очевидно, что в иных случаях прямая спроса может занимать любое положение между двумя описанными крайними случаями. Понимая все это, Маршалл предложил задавать изменение цены не в единицах денег, а в процентах. Как меняется спрос при изменении цены на 1%? Этот показатель Маршалл назвал эластичностью спроса. Теперь мы можем сравнивать. Например, при снижении обеих цен на 1% спрос на жвачку увеличивается на 8%, а спрос на видеокассеты — на 2%. Спрос на жевательную резинку более эластичен. Чего будем заказывать больше? Правильно: жвачки. Заметим, что для вычисления эластичности изменения обеих величин нужно брать по модулю, т.е. считая их обе положительными числами. Если этого не делать, тогда числитель дроби будет отрицательным при положительном знаменателе (при снижении цены) или наоборот (при повышении цены) и показатель эластичности окажется со знаком минус, что лишено экономического смысла. Формула эластичности такова: где e — эластичность спроса на товар икс по цене. Когда мы говорим об эластичности какого-то показателя, мы всегда должны указывать, по какому другому показателю дается эта эластичность. К примеру, мы можем представить себе кривую спроса на мороженое в зависимости от того, насколько жаркая погода на дворе. По оси абсцисс у нас опять будет количество покупок, но по оси ординат уже будет не цена одного "эскимо", а температура воздуха. И когда мы будем говорить о том, как изменение одного влияет на изменение другого, мы должны сказать: "эластичность спроса по температуре воздуха". Показатель эластичности может использоваться, конечно, при изучении не только спроса, но и многих других показателей. Например, эластичность рыночного предложения по издержкам. Можно было бы вычислить эластичность уличных травм по степени гололедицы. Если бы мы умели представить последнюю в виде переменной величины с однородной единицей измерения, мы могли бы получить и соответствующую кривую, а значит, и узнать показатель эластичности: насколько растет число травм при увеличении гололедицы на 1%. Маршалл и его продолжатели выяснили несколько интересных свойств показателя эластичности и вывели из них ряд практических следствий. Но сперва постараемся дать более точное определение эластичности. Рассмотрим числитель дроби (2). Изменение количества в процентах можно алгебраически записать так: — 416 —
|