Еще одна гипотеза менее респектабельна, но существенна для нашего исследования. А также хоть и менее респектабельна, но не вполне маргинальна. Речь идет о наличии так называемых скрытых измерений. То есть о том, что Вселенная на самом деле имеет не четыре эйнштейновских измерения, а семь, одиннадцать или даже двадцать семь. Однако эти дополнительные скрытые измерения, обсуждаемые в ряде так называемых «суперструнных» теорий, проявляются лишь на сверхмалых расстояниях (порядка 10–33–10-37 м). На этих же расстояниях, иногда именуемых «планковскими», именно эти скрытые измерения определяют гравитационное взаимодействие. И через это свое вмешательство обеспечивают эффект дополнительной массы. От краткого обзора того, что касается темной массы, перейдем к тому, что касается темной энергии. Уже первые модели Вселенной, созданные на основе Общей теории относительности Эйнштейна, показали, что Вселенная, подчиняющаяся Общей теории относительности, должна быть слишком неустойчивой. Она слишком быстро должна начать опять сжиматься, возвращаясь к привычной сингулярности. Для построения не столь неустойчивых моделей Эйнштейн был вынужден ввести в свою теорию дополнительное скалярное поле. Он назвал его «лямбда-член», понимая, что фактически речь идет о допущении наличия… АНТИГРАВИТАЦИИ! Для Эйнштейна гравитация как единое первоначало значила примерно то же самое, что для Фрейда — Эрос. Признание наличия антигравитации для Эйнштейна было столь же мучительным, как для Фрейда признание наличия Танатоса. Позже Фридман нашел нестационарные решения в рамках Общей теории относительности, позволяющей описать расширяющуюся Вселенную без лямбда-члена. Эйнштейн с восторгом принял эти решения Фридмана и заявил, что ошибочно ввел лямбда-член. Однако впоследствии оказалось, что решения Фридмана, избавляя от лямбда-члена, порождают другие, практически непреодолимые теоретические трудности. Оказалось также, что лямбда-член Эйнштейна и связанное с ним лямбда-поле очень убедительно описывают наблюдаемое расширение Вселенной. Это стало ясным уже после первой серии экспериментов с телескопом Хаббла. Тем не менее лямбда-поле очень долго считали неким не слишком обязательным теоретическим артефактом, не имеющим внятного физического объяснения. Однако в 60-е годы советский физик Эраст Глинер опубликовал теоретические работы, представляющие лямбда-поле как фундаментальное свойство физического вакуума. Глинер приписал вакууму, во-первых, определенную плотность энергии, а во-вторых, отрицательное внутреннее давление, подобное тому, которое имеет место в растянутой резинке. — 338 —
|