Хотя схема Альфера и Гамова была очень красива, вскоре стало очевидно, что хотя нуклеосинтез в раскаленном «эпицентре» Большого взрыва и вправду мог обеспечить относительно много изотопов водорода и гелия (а также немного лития и еле заметное количество бериллия и бора), когда речь заходила о создании еще более тяжелых элементов, возникала череда неразрешимых проблем. Их суть легко понять, если прибегнуть к простой механической метафоре: очень трудно взбираться по лестнице, когда не хватает некоторых ступеней. В природе нет стабильных изотопов с атомной массой 5 и 8 . То есть стабильные изотопы гелия имеют атомную массу лишь 3 и 4, стабильные изотопы лития – 6 и 7, единственный по-настоящему стабильный изотоп бериллия имеет атомную массу 9 (а с атомной массой 10 он всего лишь долгоживущий) и т. д. Атомных масс 5 и 8 нет. Следовательно, гелий (атомная масса 4) не может захватить еще один нейтрон и создать ядро, которое оказалось бы достаточно долгоживущим, чтобы продолжить алгоритм захвата нейтрона. Такие же сложности возникают и у лития из-за пропуска на месте атомной массы 8. Пропуски в череде атомных масс досадным образом мешали прогрессу по алгоритму Гамова и Альфера. Даже великий физик Энрико Ферми[304], совместно с коллегой довольно подробно изучив эту проблему, с огорчением отметил, что синтез во время Большого взрыва «не может объяснить, как были сформированы элементы». Вывод Ферми, что углерод и более тяжелые элементы не могли возникнуть во время Большого взрыва, в сочетании с утверждением Бете, что эти элементы не могут создаваться в звездах и в Солнце, привел к неразрешимой, казалось бы, загадке: как же синтезировались тяжелые элементы? Именно в этот момент на сцену и вышел Фред Хойл. И сказал Бог: да будет ХойлВо второй половине 1944 года Хойл работал над военно-морскими радарами и по долгу службы оказался в США, где воспользовался случаем и познакомился в Маунт-Вильсоновской обсерватории с одним из самых авторитетных астрономов своего времени Вальтером Бааде. От Бааде Хойл узнал, насколько плотными и горячими могут стать ядра массивных звезд на поздних стадиях жизни. Изучив эти экстремальные условия, Хойл понял, что при температурах, приближающихся к миллиарду градусов, протоны и ядра гелия могут легко переходить кулоновский барьер других ядер, а в результате ядерные реакции и взаимообмен в обе стороны может происходить так часто, что весь ансамбль частиц приходит в состояние так называемого статистического равновесия . — 123 —
|