Родного города Архимеду, однако, отстоять не удалось, были у него зеркала или нет. Мало того, при занятии Сиракуз он попался на глаза какому-то римскому солдату и был убит. Но на этом чудеса не кончаются. Оказывается, сиракузяне о таком знаменитом земляке ничего не знали, пока им не рассказал о нем приехавший на остров через 137 лет после его смерти квестор Цицерон. Ему пришлось лично разыскать и указать неблагодарным потомкам могилу гения. Достойное завершение сказок об Архимеде. Основные сочинения Архимеда, относящиеся к физике – «О равновесии плоскостей» и «О плавающих телах». Трактат «О равновесии плоскостей» исходит из принятого положения, что равные по весу величины, действующие на одинаковых расстояниях, находятся в равновесии. Отсюда вытекает другое положение: если две равные по весу величины не имеют общего центра тяжести, то центр тяжести величины, полученный от сложения обеих, будет лежать посередине прямой, соединяющей центры тяжести обеих величин. При помощи этих положений Архимед доказывает справедливость закона рычага. Именно: если к рычагу привешены два груза, то на основании второго положения можно разделить каждый груз на 2, 4, 8 равных частей и привесить их попарно в равных расстояниях от первоначальных точек привеса, не нарушая действия. Если же первоначальные два груза имеют массу обратно пропорциональную их расстояниям от точки опоры рычага, то отдельные части грузов могут быть распределены по обоим плечам рычага таким образом, что на обоих будет находиться равное число грузов на попарно равных расстояниях, откуда следует, что система находится и, следовательно, раньше должна была находиться в равновесии. Это доказательство возбуждало много возражений, но тем не менее оно очень долго не заменялось каким-либо другим, более строгим. Сочинение «О плавающих телах» основано на положениях, что жидкость во всех частях однородна и непрерывна и что во всякой жидкости менее сжатая часть смещается другой, более сжатой; наконец, что всякая часть жидкости претерпевает давление от лежащей отвесно над нею жидкости. Отсюда выводится, что поверхность покоящейся жидкости должна иметь сферическую форму, концентрическую с поверхностью земли; что тело, которое легче жидкости, погружается в нее до тех пор, пока вес тела не сравняется с весом вытесненной жидкости. Что тело, насильственно погруженное в жидкость, всплывает с силою, равной избытку веса жидкости над весом тела. И наконец, что тело более тяжелое, чем жидкость, погружается в нее совсем и теряет вес, равный весу вытесненной жидкости. Вслед за этим наиболее знаменитым из своих положений Архимед высказывает новую гипотезу: «Все тела, вытесняемые жидкостью кверху, двигаются по отвесной линии, проходящей через их центр тяжести». — 301 —
|