S = [р(р-а)(р-b)(р-с)] 1/2, где а, b, с – стороны, p= (а + b + с)/2 . Наконец, значительную часть содержания «Метрики» составляет описание приемов землемерия и геодезических инструментов. Значение прикладной вычислительной стороны математики еще более подчеркивается той большой и все возрастающей работой, которую математики вынуждены были вести для составления астрономических таблиц. Среди последних особо значительное место занимают таблицы хорд Птолемея, где данные приведены через каждые 30 от 0 до 180°. На основе преимущественного роста вычислительной стороны математики, а возможно и под другими дополнительными влияниями в математике зародились элементы алгебры и начальные формы алгебраической символики. На это обстоятельство указывают методы и результаты Диофанта. Из математических сочинений этого александрийского ученого сохранились шесть книг «Арифметики» и отрывки книги о многоугольных числах. Диофант во всех задачах производит только операции с числами, нигде не высказывая общих теорем. Тем не менее для обозначения неизвестного количества в уравнении и для записи функций от него он был вынужден разработать систему символов. Символика Диофанта основана на сокращении слов, и в истории развития алгебраической символики она знаменует переход от словесных выражений алгебраических зависимостей (риторическая алгебра) к сокращениям этих выражений (синкопическая алгебра). Следующей ступенью развития стала чисто символическая алгебра. Неизвестная величина х в уравнениях Диофанта представлена специальным символом. Переписчики, впрочем, пользовались разными символами, что не изменяет принципиально существа дела, ибо символика не строго единообразная, имеет модификации. Общая теория диофантовых уравнений первой степени ах+b=1 , где а и b – взаимно простые целые числа, была построена в XVII веке французским математиком Баше де Мезириаком (1587–1638). Он также издал в 1621 году сочинения Диофанта на греческом и латинском языках со своими комментариями. Над созданием общей теории диофантовых уравнений 2-й степени трудились многие выдающиеся ученые: П. Ферма, Дж. Валлис, Л. Эйлер, Ж. Лагранж и К. Гаусс. В результате их усилий к началу XIX века было в основном исследовано общее неоднородное уравнение 2-й степени с двумя неизвестными и с целыми коэффициентами. Имя Диофанта прочно закрепилось и в той части теории чисел, которая изучает приближения действительных чисел рациональными числами; эти приближения так и называются диофантовыми. Историки науки отмечают, что после закрытия афинской школы в бассейне Средиземноморья в развитии математики как науки наступил длительный перерыв. Но мы помним, что это за афинская школа. Это как раз время заката Византийской империи, и подтверждением тому – тот неоспоримый факт, что в рамках математических теорий «античной древности» возникли и развивались элементы более поздних математических наук: алгебры, анализа бесконечно малых, аналитической геометрии, теоретической механики, аксиоматического метода в математике. — 256 —
|