В дальнейшем теория пифагорейцев о музыке сфер получила свое развитие в трудах знаменитого ученого-астронома Иоганна Кеплера. Пифагорейцы по качеству разделяли числа на три основных категории - несовершенные, совершенные, сверхсовершенные. Для определения к какой категории относится данное число они действовали следующим образом - расчленяли его на части, входящие в первый десяток и на само целое, таким образом, чтобы в результате получались не дроби, а целые части. К несовершенным относились такие числа, сумма частей которых была меньше целого. Примером такого числа можно служить число 8, так как его половина -четвёрка, одна четверть - двойка и одна восьмая - единица в сумме дают число семь. Совершенными считались такие числа, сумма частей которых равнялась целому. Первым совершенным числом считалась шестерка, так как её половина - тройка, треть - двойка и, наконец, шестая часть -единица в сумме составляют целое число шесть. Сверхсовершенными числами пифагорейцы считали такие числа, сумма частей которых превосходила рассматриваемое целое. Таким числом было, например, число 12, сумма частей которого (половина - шестёрка, треть - четвёрка, четверть - тройка, шестая часть - двойка и двенадцатая часть - единица) в сумме дают число 16. Другими сверхсовершенными числами были такие числа, как 18, 20, 24, 30, 40, 44 и т. д. Пифагорейская нумерология оказала существенное влияние на представления более поздних эзотерических учений, рассматривающих числовой символизм. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Свидетельства посвящённыхМыслители, оккультисты, эзотерические философы прошлого придавали огромное значение числовому символизму и так называемой "священной науке чисел", позволяющей более глубоко постичь этот мир и увидеть каким образом проявленное и сотворенное связано с непроявленным и вечным. Много говорили на эту тему самые разные мыслители античности, которые являлись посвященными в таинства мироздания. Красочно говорили о числе Гераклит и особенно Анаксагор, известный как создатель доктрины "двойной бесконечности". Филолай называл число "первичной моделью творения мира", "органом суждения Творца мира", "неизреченным числом". Платон видел в числе "причинные основы сущности для всего прочего". Подробно описывает платоновский взгляд на проблему числа Лосев: "Платон требует признать за каждым числом не только его делимость на отдельные единицы, но и его как цельную и неделимую субстанцию, подобно тому, как мы говорим "тысяча" без всякого раздельного представления обозначаемых этими словами отдельных единиц; любое число, большое и малое, цельное или дробное, всегда есть нечто, а значит, есть нечто неделимое, поскольку никакая цельность вообще не сводится на сумму своих частей. Это и есть "числа сами по себе", без которых мышление не обходится и которые ведут к истине. — 22 —
|