Стратегии гениев том 2

Страница: 1 ... 3334353637383940414243 ... 116

Это дает математике бульшую простоту и внутреннюю согласованность, чем та, что существует в мире сенсорных опытов и в вербальных языках, потому что она в меньшей мере подвластна влиянию разнообразия сенсорного мира. Но, чтобы оставаться практичным, математическому языку нужно было как-то соединиться с этим миром. Эйнштейн объясняет это так:

“Физика тоже оперирует математическими концепциями; но они приобретают физическое содержание только при ясной соотнесенности с объектами опыта”.14

И вновь мы видим, что эффективность математического языка, как и всех других, зависит от обратной связи с сенсорным опытом. По Эйнштейну, наука эффективна, если она хранит равновесие между преимуществами языка, лежащими в его структуре, и преимуществами сенсорного опыта, вдыхающего жизнь в эту структуру.

“Наука борется за полную остроту и ясность концепций по отношению друг к другу и к сенсорным данным. В качестве иллюстрации рассмотрим язык Эвклидовой геометрии и алгебры. Они обращаются с малым числом независимо представленных концепций и соответственных символов, таких как интегральное число, прямая линия, точка, а также с символами, предназначенными для фундаментальных операций. Это связь фундаментальных концепций и основа для будущего конструирования, определяющая все остальные утверждения и концепции.

Связь между концепциями и утверждениями, с одной стороны, и сенсорными данными — с другой устанавливается строго определенными расчетом и измерением”15.

Но даже эти “строго определенные” методы измерения подвержены обобщению, стиранию и искажению. Возможно, самым значительным вкладом Эйнштейна в науку было то, что он подверг сомнению базовые предположения, стоящие за нашими стандартами измерений таких понятий, как пространство и время.

5. МИКРОАНАЛИЗ ПРОЦЕССА

ТВОРЧЕСКОГО МЫШЛЕНИЯ

ЭЙНШТЕЙНА

Теперь мы имеем общее представление о том, как мыслил Эйнштейн и как использовал основные психологические процессы, фундаментальные для повседневного мышления — “сенсорные опыты”, “картины-воспоминания”, “образы”, “ощущения” и “язык”. Нашим следующим шагом будет более пристальный анализ применения Эйнштейном некоторых из этих процессов в своей мыслительной стратегии. И, поскольку он провозглашал “комбинаторную игру неотъемлемой чертой продуктивной мысли”, давайте исследуем, как именно он сочетал “картины-воспоминания” и конструировал “образы” в процессе мышления.

“Продуктивные” образы Эйнштейна были не абстрактными двухмерными диаграммами, заполненными символами, трехмерными метафорическими визуализациями, которые он называл “мыслительными экспериментами”. Один из ключей к пониманию того, как Эйнштейн применял визуализацию, уже был дан в главе о моделировании (пример с двумя кастрюлями на газовой плите).

— 38 —
Страница: 1 ... 3334353637383940414243 ... 116