§ 35. Обращение простых интервалов Обращением интервала называется результат перемены мест составляющих его тонов, когда основание становится вершиной, а вершина — основанием интервала. При обращении обязательно образуется новый интервал, который вместе с первоначальным непременно составляет октаву. Однако числовое выражение суммы обоих интервалов (данного и его обращения) всегда будет равняться 9 (а не 8), так как во взаимообратимых интервалах один из звуков считается дважды, ибо входит как в первый, так и во второй интервал. Итак:
Из приведенной таблицы видно, что тесные интервалы (от примы до кварты включительно) обращаются в широкие (от квинты до октавы включительно) и наоборот. Сам процесс обращения простых интервалов сводится к следующему: один из звуков данного интервала переносится на октаву в сторону, противоположную его местонахождению (основание — вверх или вершина — вниз), а другой звук при этом остается на месте, в результате чего образуется новый интервал, являющийся обращением первого, где функции составляющих его звуков меняются ролями: основание становится вершиной, а вершина — основанием. Если подвергающийся переносу на октаву звук был альтерированным, то он сохраняет свой знак альтерации: 79 Что же касается вида интервала, определяемого, как известно, его тоновой величиной, то при обращении все интервалы (за исключением чистых) получают противоположный вид, то есть большие интервалы обращаются в малые, увеличенные — в уменьшенные, дважды увеличенные — в дважды уменьшенные и наоборот. Только чистые интервалы при обращении сохраняют свой вид и обращаются тоже в чистые интервалы. Сумма тонов обоих взаимообращающихся интервалов всегда равняется 6 тонам (то есть тоновой величине чистой октавы): 80 б. 3 м. 6 ч. 5 ч. 4 м. 3 б. 6 м. 7 б. 2 2 т. + 4 т. 3 1/2 т.+2 1/2 т. 1 1/2 + 4 1/2 + 5 т. + 1 т. — 51 —
|