Е.М.Родионов

СПРАВОЧНИК MATEMATIKE для поступающих

B

Е.М.Родионов

СПРАВОЧНИК ПО MATEMATUKE ДЛЯ ПОСТУПАЮЩИХ В

РЕШЕНИЕ ЗАДАЧ С ПАРАМЕТРАМИ

ПРЕДИСЛОВИЕ

В настоящее время на вступительных экзаменах в ВУЗы предлагаются задачи и примеры с параметрами, решение которых вызывает большие затруднения у поступающих.

Нередко при решении примеров с параметрами поступающие ограничиваются лишь тем, что составляют формулы, выражающие значения неизвестных через параметры. Такое формальное решение может оказаться неполным, поскольку не рассматривается вопрос о том, при каких значениях параметра эти формулы применимы.

Существует несколько вариантов условий параметрических примеров — исследовать уравнение, решить уравнение, определить количество решений, найти положительные корни и т. д. В силу такого многообразия условий нельзя дать универсальных указаний по решению примеров, поэтому в справочнике приводится много примеров с решениями.

Материал пособия представлен по такой схеме: справочные сведения, примеры с решениями, примеры для самостоятельной проработки с ответами.

Такая форма изложения наиболее удобна для активного усвоения методов решения задач. В ряде случаев при разборе конкретных примеров приводится, возможно, не самое короткое и изящное решение задачи. Это объясняется прежде всего тем, что при разборе примера автор в первую очередь стремился дать наглядное применение предложенного метода, а вовсе не продемонстрировать примеры нестандартных подходов к решению различных задач. Задачи, используемые в справочнике, в основном взяты из вариантов, предлагавшихся в последние годы на вступительных экзаменах по математике в ВУЗы с повышенными требованиями к математической подготовке абитуриентов.

В пособии использованы следующие обозначения: R — множество всех действительных чисел, числовая прямая; \Rightarrow — знак следования; \Leftrightarrow — знак равносильности; \in — знак принадлежности; \forall — знак «для любого», «для каждого», «для всех».

Справочное пособие рассчитано на поступающих в ВУЗы, старшеклассников, а также будет полезно преподавателям школ и подготовительных курсов.

ВВЕДЕНИЕ

Если в уравнение или неравенство кроме неизвестных входят числа, обозначенные буквами, то они называются параметрами, а уравнение или неравенство параметрическим.

Если параметру, содержащемуся в уравнении (неравенстве), придать некоторое числовое значение, то возможен один из двух следующих случаев:

- 1) получится уравнение (неравенство), содержащее лишь данные числа и неизвестные и не содержащее параметров;
 - 2) получится условие, лишенное смысла.

В первом случае значение параметра называется *допустимым*, во втором — *недопустимым*. При решении примеров допустимые значения параметров определяются из их конкретного смысла.

Так, в уравнении $\frac{1}{x-a} + \frac{x}{a} = 2$ допустимым является любое значение a, кроме a = 0 и a = x; если $|x^2 - x - 2| = a$, то $a \ge 0$.

Решить уравнение или неравенство, содержащее параметр, — это значит для каждого допустимого значения параметра найти множество всех значений данного уравнения (неравенства).

Нередко при решении примеров с параметрами поступающие ограничиваются лишь тем, что составляют формулы, выражающие значения неизвестных через параметры. Такое формальное решение может оказаться неполным, поскольку не рассматривается вопрос о том, при каких значениях параметра эти формулы применимы. Например, при решении уравнения $m^2(x-2)-3m=x+1$ переходят к уравнению $(m^2-1)x=2m^2+3m+1$

при $m \neq \pm 1$ записывают единственное решение $x = \frac{2m+1}{m-1}$.

Но ведь при m=-1 — бесчисленное множество решений, а при m=1 — нет решений.

1. РЕШЕНИЕ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ С ОДНИМ НЕИЗВЕСТНЫМ

Справочный материал

Решить уравнение f(x, a, b, c, p) = 0 это значит:

а) определить множество допустимых значений неизвестного и параметров; б) для каждой допустимой системы значений параметров найти соответствующие множества решений уравнения.

Простейшее уравнение первой степени с одним неизвестным имеет вид ax-b=0.

А. При $a \neq 0$ уравнение имеет единственное решение $x = \frac{b}{a}$, которое будет: положительным (x>0), если $\begin{cases} a>0 \\ b>0 \end{cases}$ или $\begin{cases} a<0 \\ b<0 \end{cases}$; нулевым (x=0), если $\begin{cases} b=0 \\ a\neq 0 \end{cases}$; отрицательным (x<0), если $\begin{cases} a>0 \\ b<0 \end{cases}$ или $\begin{cases} a<0 \\ b>0 \end{cases}$

Б. Если $a\!=\!0$, то при $b\!=\!0$ бесчисленное множество решений; при $b\!\neq\!0$ решений нет.

Примеры с решениями

Пример 1. Для каждого значения a решить уравнение $\frac{a-1}{x} = \frac{a}{x+1}$; найти при каких a корни больше нуля.

 \triangle Исходное уравнение не является линейным, но при $x \neq 0$ и $x \neq -1$ сводится к таковому: (a-1)(x+1)=ax или a-1-x=0.

Кроме допустимых значений x выявим допустимые значения параметра a. Из $a-1-x=0 \Leftrightarrow a=1+x$ и при $x\neq 0$ $a\neq 1$, а при $x\neq -1$ $a\neq 0$.

Таким образом, при $a \neq 0$ и $a \neq 1$ x = a - 1 и этот корень больше нуля при a > 1.

Ответ: при $a \in \mathbb{R} \setminus \{0;1\}$, x = a - 1; при $a \in \{0;1\}$ — решений нет; корень положителен при a > 1.

Пример 2. Решить уравнение

$$\frac{3}{kx - 12} = \frac{1}{3x - k}. (1)$$

 \triangle Допустимыми значениями x и k будут значения, при которых $kx-12\neq 0$ и $3x-k\neq 0$ или $kx\neq 12$ и 3x=k.

Приведем (1) к простейшему виду:

$$9x - 3k = kx - 12
(9 - k)x = 3k - 12.$$
(2)

Найдем k, при которых (1) и (2) не равносильны или (1) не имеет числового смысла.

Подставив в (2) $x = \frac{12}{b}$, получим:

$$(9 - k) \cdot \frac{12}{k} = 3k - 12 \Rightarrow 108 - 12k = 3k^2 - 12k \Rightarrow k = \pm 6.$$

Если подставим $x = \frac{k}{3}$, то также получим $k \pm 6$.

Таким образом, при $k\pm 6$ уравнение (1) не имеет числового смысла т. е. $k\pm 6$ — недопустимые значения параметра k для (1). При $k\neq \pm 6$ можем решать уравнение (2).

А. Если $9-k\neq 0$, то уравнение (2), а вместе с ним и уравнение (1) имеют единственное решение $x=\frac{3k-12}{9-k}$, которое будет:

- а) положительным, если (3k-12)(9-k)>0 при 4< k< 9 с учетом $k\neq 6: k\in]4; 6[\cup]6; 9[;$
 - б) нулевым, если $3k-12=0 \Rightarrow k=4$;

в) отрицательным, если (3k-12) $(9-k) < 0 \Rightarrow k < 4$ и k > 9 с учетом $k \neq -6$, получаем $k \in]-\infty$; $-6[\cup]-6$; $4[\cup]9$; $+\infty$ [.

Б. Если $9-k=0 \Rightarrow k=9$, то уравнение (2) решения не имеет.

Ответы: a) $x = \frac{3k-12}{9-k}$ при $k \neq \pm 6$ и $k \neq 9$,

причем x>0 $\forall k\in]4; 6[\cup]6; 9[; x=0$ при k=4; x<0 $\forall k\in]-\infty; -6[\cup]-6; 4[\cup]9; +\infty[;$

б) при $k \in \{-6; 6; 9\}$ уравнение не имеет решений. \blacktriangle

Пример 3. Решить уравнение

$$\frac{a}{3a+x} = \frac{2}{b+x}. (1)$$

 \triangle Допустимыми значениями неизвестного и параметров будут те значения, при которых $3a+x\neq 0$ и $b+x\neq 0$.

Приведем уравнение (1) к простейшему виду. Умножив обе его части на (3a+x)(b+x), получим a(b+x)=6a+2x или

(a-2)x = a(6-b) (2). При $3a+x \neq 0$ и $b+x \neq 0$ уравнения (1)

и (2) будут равносильными.

Найдем значения a и b, при которых 3a+x=0 и b+x=0, т. е. уравнение (1) не имеет смысла и не равносильно уравнению (2). Для этого в уравнение (2) подставим последовательно x=-3a и x=-b, (a-2) (-3a)=a(6-b) или a(b-3a)=0, откуда найдем a=0 и b=3a; (a-2)(-b)=a(6-b) или 2b=6a, откуда найдем b=3a.

Таким образом, уравнение (1) при a=0 и b=3a не имеет

числового смысла.

При $a \neq 0$ и $b \neq 3a$ уравнения (1) и (2) равносильны и исследовать уравнение (1) можно с помощью уравнения (2).

Если $a-2\neq 0$, т. е. $a\neq 2$, то уравнение (2) имеет единственное решение $x=\frac{a(6-b)}{a-2}$, которое будет:

а) положительным, если $\left\{ egin{array}{ll} a\,(6-b)>0 \\ a-2>0 \end{array}
ight.$ или $\left\{ egin{array}{ll} a\,(6-b)<0 \\ a-2<0 \end{array}
ight.$

Из первой системы следует, что $\left\{ \substack{a>2\\b<6} \right\}$. Из второй системы сле-

дуют две совокупные системы $\begin{cases} 0 < a < 2 \\ b > 6 \end{cases}$ и $\begin{cases} a < 0 \\ b < 6 \end{cases}$ при $b \neq 3a$;

- б) нулевым, если a(6-b)=0. Поскольку $a\neq 0$, то b=6, т. е. $\begin{cases} a\neq 0 \\ b=6 \end{cases}$
 - в) отрицательным, если $\left\{ egin{array}{ll} a(6-b)\!>\!0 \ a-2\!<\!0 \end{array}
 ight.$ или $\left\{ egin{array}{ll} a(6-b)\!<\!0 \ a-2\!>\!0 \end{array}
 ight.$

Из систем неравенств находим:

из первой —
$$\begin{cases} a < 0 \\ b > 6 \end{cases}$$
 и $\begin{cases} 0 < a < 2 \\ b < 6 \end{cases}$;

из второй $-\begin{cases} a>2\\b>6 \end{cases}$ при $b\neq 3a$.

Если a-2=0, т. е. a=2, то уравнение (2) принимает вид $0\cdot x=2(6-b)$, откуда следует:

- а) при b=6, т. е. $\begin{cases} a=2\\b=6 \end{cases}$ уравнение имеет бесчисленное множество решений;
 - б) при $b \neq 6$ уравнение решений не имеет.

Ответы:
$$x = \frac{a(6-b)}{a-2}$$
, если $a \neq 2$, $a \neq 0$ и $b \neq 3a$; причем $x > 0$ при $\begin{cases} a < 0 \\ b < 6 \end{cases}$, $\begin{cases} 0 < a < 2 \\ b > 6 \end{cases}$, $\begin{cases} a > 2 \\ b < 6 \end{cases}$

x = 0 при b = 6;

$$x < 0$$
 при $\begin{cases} a < 0 \\ b > 6 \end{cases}$, $\begin{cases} 0 < a < 2 \\ b < 6 \end{cases}$, $\begin{cases} a > 2 \\ b > 6 \end{cases}$

Уравнение имеет бесчисленное множество решений, если $\left\{ \begin{array}{l} a=2\\ b=6 \end{array} \right.$; решений нет, если $\left\{ \begin{array}{l} a=2\\ b\neq6 \end{array} \right.$; a=0; 3a=b и $a\neq2$. \blacktriangle

Упражнения

1. Определить значения k, при которых корни уравнения $\frac{3}{8x-k}=\frac{1}{kx-2}$ положительны.

Ответ: $\frac{8}{3} < k < 4$; 4 < k < 6.

2. Решить уравнение $\frac{5}{ax-4} = \frac{1}{9x-a}$.

Ответ: $x = \frac{5a-4}{45-a}$ при $a \neq \pm 6$ и $a \neq 45$.

- 3. Решить уравнения и определить знаки корней:
- 1) ax + 2x + 3 = 1 x; 2) $40x + 13a = \sqrt{a} + 15x$;
- 3) $40x + 12a = \sqrt{a-2} + \sqrt{a} + 36x$; 4) 3x + 9 = a(a-x).

Ответы: 1) при $a \neq -3$ $x = \frac{-2}{a+3}$; при a < 3 x > 0;

- 2) при $a \geqslant 0$ $x = \frac{\sqrt{a-13a}}{25}$; x > 0 при 0 < a < 1;
- 3) если $a \geqslant 2$, $x = \frac{\sqrt{a-2} + \sqrt{a-12a}}{4}$; x = 0 при $a > \sim 36$;
- 4) если a = -3, $x \in \mathbb{R}$; если $a \neq -3$, x = a 3.
- 4. Найти все b, при каждом из которых решение уравнения 6-3b+4bx=4b+12x меньше 1.
- 5. Найти все m, при каждом из которых решение уравнения 5x-18m=21-5mx-m больше 3.
- 6. Найти все a, при каждом из которых решение уравнения 15x-7a=2+6a-3ax меньше 2.

Ответы: 4. -2 < b < 3 5. m < -3 и m > -1; 6. -5 < a < 4.

7. Решить уравнение $a^2x = a(x+2)-2$.

Ответ: Если $a \neq 0$, $a \neq 1$, то x = 21a; если a = 0, то нет решений, если a = 1, то $x \in \mathbb{R}$.

8. Решить ўравнения:

- 1) 4+mx = 3x+1; 2) ax-7 = 2x+10;
- ax a = x 1; 4) mx + 1 = x + m;
 - 5) $\frac{mx-3}{x-1} = 0;$ 6) $\frac{2mx+5}{x-10} = 0;$

7)
$$\frac{2a}{x-1} = 1;$$
 8) $\frac{x}{a-1} - \frac{x}{a} = \frac{4a^2 - 1}{a(a-1)};$

9)
$$\frac{mx}{m-x} = 1;$$
 10) $\frac{ax}{3a-x} = 2;$

11)
$$\frac{ax-4}{a-x} = 1$$
; 12) $\frac{1}{x-2a} = \frac{2}{ax-1}$.

Ответы: 1) единственный корень $x = \frac{3}{3-m}$ при $m \neq 3$; нет корней при m = 3;

- 2) единственный корень $x = \frac{17}{a-2}$ при $a \neq 2$; нет корней при a = 2;
- 3) единственный корень x=1 при $a \neq 1$; x любое число при a=1:
- 4) единственное решение x = 1 при $m \ne 1$; x любое при m = 1;
- 5) единственное решение $x = \frac{3}{m}$ при $m \neq 0$ и $m \neq 3$; нет решений при m = 0 и m = 3;
- 6) единственное решение $x=-\frac{5}{2m}$ при $m=-\frac{1}{4}$ и $m\neq 0$; нет решений при $m=-\frac{1}{4}$ и m=0;
- 7) единственное решение x=2a+1 при $a \ne 0$, нет решений при a=0;
- 8) единственное решение x=2a+1 при $a \neq 0$, $a \neq \frac{1}{2}$ и $a \neq 1$; x любое при $a = \frac{1}{2}$; нет решений при a = 0 и a = 1;
- 9) единственное решение $x = \frac{m}{m+1}$ при $m \neq -1$ и $m \neq 0$; нет решений при m = -1 и m = 0;
- 10) единственное решение $x = \frac{6a}{a+2}$ при $a \neq -2$ и $a \neq 0$; нет решения при a = -2 и a = 0;
- 11) единственное решение $x = \frac{a+4}{a+1}$ при $a \neq -1$ и $a \neq \pm 2$; нет решения при a = -1 и $a = \pm 2$;
- 12) единственное решение $x = \frac{4a-1}{2-a}$ при $a \neq 2$ и $a \neq \frac{\pm 1}{\sqrt{2}}$; нет решения при a = 2 и $a = \frac{\pm 1}{\sqrt{2}}$.
 - 9. Решить уравнение

$$\frac{a^3-1}{a^3+1}=\frac{a(x-1)+a^2-x}{a(x-1)-a^2+x}.$$

Ответ: если $a \neq 0$ и $a \neq \pm 1$. то $x = a^2 - 1$; если a = 0, $x \in \mathbb{R} \setminus \{0\}$; если a = 1, $x \in \mathbb{R} \setminus \{1\}$; если a = -1, уравнение не имеет смысла.

2. РЕШЕНИЕ ЛИНЕЙНЫХ НЕРАВЕНСТВ

Справочный материал

Неравенства вида $a_0x + a_1 > 0$, $a_0x + a_1 < 0$, $a_0 \ne 0$ называются линейными неравенствами.

Множество решений неравенства $a_0x + a_1 > 0$ определяется знаком числа a_0 :

* а) если $a_0 > 0$, то решениями являются все числа промежутка $|-a_1/a_0| + \infty$ [;

б) если $a_0 < 0$, то решениями являются все числа промежутка $]-\infty$; $-a_1/a_0$ [.

Аналогично для неравенства $a_0x + a_1 < 0$ имеем:

- а) если $a_0 > 0$, то решениями являются все числа промежутка $|-\infty; -a_1/a_0[;$
- б) если $a_0 < 0$, то решениями являются все числа промежутка $]-a_1/a_0; +\infty]$.

Примеры с решениями

Пример 1. Решить линейное неравенство

$$x - 2\frac{a-1}{a} \leqslant \frac{2}{3a}(x+1).$$

 \triangle Видно, что при a=0 неравенство решений не имеет, так как обе части неравенства теряют смысл.

Преобразуем исходное неравенство

$$\left(1 - \frac{2}{3a}\right)x \leqslant \frac{2}{3a} + 2 - \frac{2}{a} \Rightarrow \left(1 - \frac{2}{3a}\right)x \leqslant 2\left(1 - \frac{2}{3}a\right).$$

Если $1-\frac{2}{3}a>0$, то $x\leqslant 2$. Установим при каких a $1-\frac{2}{3a}>0$. $(3a-2)a>0 \Rightarrow a\left(a-\frac{2}{3}\right)>0 \Rightarrow a<0$ и $a>\frac{2}{3}$, т. е. $x\leqslant 2$ при a<0 и $a>\frac{2}{3}$.

Если
$$1 - \frac{2}{3a} < 0$$
, то $x \ge 2$ при $0 < a < \frac{2}{3}$.

Если $a = \frac{2}{3}$, то $x \in \mathbb{R}$.

Ответ: если a < 0, то $x \in]-\infty$; 2]; если a = 0, решений нет; если $0 < a < \frac{2}{3}$, то $x \in [2; +\infty[$; если $a = \frac{2}{3}$, то $x \in \mathbb{R}$; если $\frac{2}{3} < a$, то $x \in [2; +\infty[$; если $a = \frac{2}{3}$, то $x \in \mathbb{R}$; если

Пример 2. Решить неравенство 2ax + 5 > a + 10x.

 $\triangle 2ax - 10x > a - 5 \Leftrightarrow 2x(a - 5) > a - 5.$

Последующие действия выполняем, исследуя возможные варианты:

- 1) $a-5\neq 0$, так как надо строгое неравенство;
- 2) обе части неравенства можно разделить на (a-5), при этом следует учесть знак этой разности. При a-5>0 x>

$$> \frac{(a-5)}{2(a-5)} = \frac{1}{2}$$
-, т. е. при $a>5$ х $> \frac{1}{2}$. При $a-5<0$ х $<$

$$<\frac{a-5}{2(a-5)}=\frac{1}{2}$$
, т. е. при $a<5$ $x<\frac{1}{2}$

Ответ: $x > \frac{1}{2}$ при a > 5; $x < \frac{1}{2}$ при a < 5; нет решений при a = 5.

Пример 3. Решить неравенство $mx - 6 \le 2m - 3x$.

△ Данное неравенство является нестрогим. Это означает, что при m+3=0 переменная x может принимать любые действительные значения, в этом можно убедиться подстановкой. Например, при m=-3 и x=5 $5\cdot 0=2\cdot 0$ — истина и при x=-1 — 1(-3+3)=2(-3+3) — истина и т. д. **Ответ:** при m>-3 $x\leqslant 2$; при m<-3 $x\geqslant 2$; при m=-3

 $x \in \mathbb{R}$.

Замечание: формальное решение неравенств, рассмотренных в примерах 2 и 3, приводит к распространенной ошибке, которая сводится к делению левой и правой частей неравенства на выражение, содержащее переменную, а это приводит к потере решений и к коротким ответам.

Неправильные решения:

$$2x(a-5) > a-5 \Leftrightarrow x > \frac{a-5}{2(a-5)} = \frac{1}{2} \Leftrightarrow x = \frac{1}{2};$$
$$x(m+3) \leqslant 2(m+3) \Leftrightarrow x \leqslant \frac{2(m+3)}{m+3} = 2 \Leftrightarrow x \leqslant 2.$$

Упражнения

- 1. Решить линейное неравенство:
- 1) ax+x-2a+1>0. Подобрать a так, чтобы решение удовлетворяло условию x < a.
- 2) ax + x + 1 < 0. Подобрать a так, чтобы решение удовлетворяло условию 1 < x.

Ответы: 1) при a < -1 $x < \frac{2a-1}{a+1}$; при a = -1 $x \in \mathbb{R}$; при a>-1 $x>\frac{2a-1}{a+1}$; x< a при a<-1;

- 2) при a < -1 $x > -\frac{1}{a+1}$; при a = -1 $x \in \emptyset$; при a > -1 $x < -\frac{1}{a+1}$; 1 < x при -2 < a < -1.
 - 2. Решить неравенства:

1)
$$ax - a^2 \ge x - 1$$
; 2) $ax + 16 \le 4x + a^2$;

- 3) mx > 1 + 3x; 4) mx < 4 2x;
- 5) x 5 > nx 1; 6) $5 + kx \le 5x + k$.

Ответы: 1) $x \geqslant a+1$ при a>1, $x \leqslant a+1$, при a<1, x — любое при a=1;

- 2) $x \leqslant a+4$ при a>4, $x\geqslant a+4$ при a<4, x- любое при a=4;
- 3) $x > \frac{1}{m-3}$ при m > 3, $x < \frac{1}{m-3}$ при m < 3, нет решений при m = 3;
- 4) $x < \frac{4}{m+2}$ при m > -2, ' $x > \frac{4}{m+2}$ при m < -2, нет решений при m = -2;
- 5) $x > \frac{4}{1-n}$ при n < 1, $x < \frac{4}{1-n}$ при n > 1, нет решений при n = 1;
 - 6) $x \le 1$ при k > 5, $x \ge 1$ при k < 5, x -любое при k = 5.
 - 3. Решить неравенства:

1)
$$\frac{a^2x+1}{2} - \frac{a^2x+3}{3} < \frac{a+9x}{6}$$
; 2) $\frac{ax+1}{3} - \frac{x-4a}{2} \geqslant \frac{a^2}{6}$.

Ответ: 1) при $|a| > 3(-\infty; 1/(a-3))$ при $|a| < 3(1/(a-3); + \infty);$ при a = -3 решений нет; при a = 3 $x \in \mathbb{R}$.

 $+\infty$); при a=-3 решений нет; при a=3 $x\in\mathbb{R}$. 2) при $a<3/2\left(-\infty; \frac{a^2-12a-2}{2a-3}\right)$; при a=3/2 $x\in\mathbb{R}$; при $a>3/2\left(\frac{a^2-12a-2}{2a-3}; +\infty\right)$.

3. РЕШЕНИЕ ЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ С МОДУЛЕМ

Справочный материал

Абсолютной величиной или **модулем числа** x называется само число x, если x > 0, число (-x), если x < 0, и нуль, если x = 0. Другими словами:

$$|x| = \begin{cases} x, \ \forall & x > 0 \\ 0, & \text{если } x = 0 \\ -x, \ \forall & x < 0. \end{cases}$$

Из определения следует, что $|x| \geqslant 0$ и $|x| \geqslant x$ для всех $x \in \mathbb{R}$. Неравенство |x| < a(a > 0) равносильно двойному неравенству -a < x < a.

Неравенство |x| < a(a < 0) не имеет смысла, так как $|x| \ge 0$.

Неравенство |x| > a(a > 0) равносильно двум неравенствам $x \in]-\infty$; $-a(\cup)a$; $+\infty$ [.

Неравенство |x| > a(a < 0) справедливо $\forall x \in \mathbb{R}$.

Примеры с решениями

Пример 1. Решить уравнение |x-2|=b.

 \triangle Так как $|x-2| \geqslant 0$, то при b < 0 данное уравнение решений не имеет. Если b=0, то уравнение имеет решение x=2, так как по определению |x-2|=0, x-2=0, x=2.

Если b>0, то решениями уравнения являются числа x=2+b и x=2-b.

Ответ: если b < 0, то решений нет; если b = 0, то x = 2; если b > 0, x = 2 + b, x = 2 - b.

Пример 2. Решить неравенство |x-3| > a.

 \triangle При a < 0 исходное неравенство верно для всех $x \in \mathbb{R}$, так как $|x-3| \geqslant 0$.

При a=0 исходное неравенство верно для всех $x \neq 3$.

При a>0 решением неравенства будут все точки числовой прямой, которые удалены от точки x=3 на расстояние больше a, т. е. x<3-a и x>3+a.

Ответ: Если a < 0, то $x \in \mathbb{R}$; если a = 0, то $x \in \mathbb{R} \setminus \{3\}$; если a > 0, то $x \in \{1, -\infty\}$; $3 - a[\bigcup 3 + a] + a \in \mathbb{R}$.

Пример 3. Решить уравнение |x-a| = |x-4|.

△ Решим методом интервалов, для 2-х случаев:

1) $a \leq 4$.

Первый интервал

$$\begin{cases} x \leqslant a \\ -x+a = -x+4 \end{cases} \begin{cases} x \leqslant a \\ a = 4 \end{cases} x \leqslant 4;$$

второй интервал

$$\begin{cases} a < x < 4 \\ x - a = -x + 4 \end{cases} \begin{cases} a < x < 4 \\ x = \frac{a+4}{2}, \quad a < \frac{a+4}{2} < 4 \Rightarrow a < 4, \end{cases}$$

т. е. если a < 4, то $x = \frac{a+4}{2}$;

третий интервал

$$\begin{cases} 4 \leqslant x \\ x - a = x - 4 \end{cases}$$
 $a = 4$, т. е. если $a = 4$, то $4 \leqslant x$.

2) $4 \leqslant a$.

Первый интервал

$$\begin{cases} x \leqslant 4 & \vdots \\ -x+a = -x+4 & a=4, \quad \text{to } x \leqslant 4; \end{cases}$$

второй интервал

$$\left\{ \begin{array}{ll} 4 < x < a \\ -x + a = \dot{x} - 4 \end{array} \right. \quad \left\{ \begin{array}{ll} 4 < x < a \\ x = \frac{a+4}{2}, \end{array} \right. \quad 4 < \frac{a+4}{2} < a, \quad a > 4,$$

т. е. если 4 < a, то $x = \frac{a+4}{2}$; третий интервал

$$\begin{cases} a \leqslant x \\ x - a = x - 4 \end{cases} \qquad \begin{cases} a \leqslant x \\ a = 4, \end{cases} \qquad 4 \leqslant x.$$

Ответ: если a = 4, то $x \in \mathbb{R}$, если $a \in \mathbb{R} \setminus \{4\}$, то $x = \frac{a+4}{2}$.

Пример 4. Для всех a решить неравенство $|1+x| \leq ax$.

 \triangle Вскрываем модуль при $1+x\geqslant 0$. Тогда исходное неравенство равносильно системе

$$\begin{cases} 1+x \geqslant 0 \\ 1+x \leqslant ax \end{cases} \Leftrightarrow \begin{cases} x \geqslant -1 \\ (1-a)x \leqslant -1 \end{cases} \Leftrightarrow \begin{cases} \begin{cases} x \geqslant -1 \\ a < 1 \\ x \leqslant -\frac{1}{1-a} \end{cases} \end{cases} (2)$$

Решим систему (1) при a < 1. Пересечение $-1 \le x \le -\frac{1}{1-a}$ возможно тогда, когда $-1 < -\frac{1}{1-a}$, т. е. $1-a > 1 \Leftrightarrow a < < 0$ при $a < 0 - 1 < x < -\frac{1}{1-a}$.

При $-\frac{1}{1-a} < -1$, т. е. при 0 < a < 1 система (1) не имеет решений, а значит и исходное неравенство также.

Решим систему (2) при a>1: возможны два варианта — точка — $\frac{1}{1-a}$ расположена правей — 1, т. е. и пересечение бу-

$$\frac{1}{-1-\frac{1}{1-a}}$$

дет
$$-\frac{1}{1-a} \leqslant x$$
 при $\begin{cases} -1 < -\frac{1}{1-a} \\ a > 1 \end{cases} \Rightarrow \begin{cases} 1-a < 1 \\ a > 1 \end{cases} \Rightarrow \begin{cases} a > 0 \\ a > 1 \end{cases}$

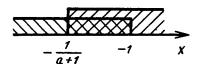
При $a>1-\frac{1}{1-a}\leqslant x$; точка $-\frac{1}{1-a}$ расположена левей-1,

т. е.

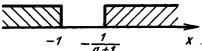
$$-\frac{1}{1-a}^{-1}$$

пересечение будет
$$-1 \leqslant x$$
 при $\left\{ \frac{-\frac{1}{1-a} < -1}{a > 1} \right\}$ $\left\{ 1 < -a+1 \atop a > 1 \right\}$ $\left\{ 1 < -a+1 \atop a > 1 \right\}$ $\left\{ 1 + x < 0 \atop -(1+x) \leqslant ax \right\}$ $\Leftrightarrow \left\{ x < -1 \atop -(a+1)x \leqslant 1 \right\}$ $\Leftrightarrow \left\{ x < -1 \atop (a+1)x \geqslant -1 \right\}$ $\Leftrightarrow \left\{ x < -1 \atop x \geqslant -\frac{1}{a+1} \right\}$ (3) и $\left\{ x < -1 \atop x \leqslant -\frac{1}{a+1} \right\}$ (4).

Решим систему (3). Решение есть, если



т. е.
$$-\frac{1}{a+1} < x < -1$$
 при $\begin{cases} -\frac{1}{a+1} < -1 \\ a > -1 \end{cases}$ \Rightarrow при $-1 < a < 0$ решение системы (3) $-\frac{1}{a+1} \leqslant x \leqslant -1$. Решения нет, если



т. е. $\begin{cases} -1 < -\frac{1}{a+1} \\ a > -1 \end{cases} \Rightarrow a > 0. \ \Pi$ ри a > 0 решения нет.

Решим систему (4). Если $\left\{ \begin{array}{l} -\frac{1}{a+1} \leqslant -1 \\ a < -1 \end{array} \right.$, т. е.

Если
$$\left\{ \begin{array}{l} -1 < \frac{-1}{a+1} \\ a < -1 \end{array} \right.$$
 , т. е. пересечение $x < -1$ при $a < -1$.

Ответ: При a>1 $x\in\left[\frac{1}{a-1};+\infty\ [;$ при $a\in\]0;$ 1] решений нет; при $a\in\]-1;$ 0 [$x\in\left[-\frac{1}{a+1};\frac{1}{a-1}\right]$; при $a\leqslant\ -1$ $x\in\]-\infty;$ $\frac{1}{a-1}$. \blacktriangle

Пример 5. Для каждого значения параметра a найти все значения x, удовлетворяющие уравнению |x+3|-a|x-1|=4.

 \triangle Рассмотрим три промежутка: 1) $-\infty < x < -3, 2$) -3 ≤ ≤ x ≤ 1, 3) $1 < x < +\infty$ и решим исходное уравнение на каждом промежутке.

1)
$$-\infty < x < -3$$
, $-(x+3)+a(x-1)=4$, $(a-1)x=7+a$,

при a=1 уравнение не имеет решений. При $a\ne 1$ уравнение имеет корень $x_1=\frac{7+a}{a-1}$. Теперь надо выяснить, при каких a x_1 по-

падает на
$$x < -3$$
, т. е. $\frac{7+a}{a-1} < -3$, $\frac{7+a+3a-3}{a-1} < 0$, 4 $\frac{a+1}{a-1} < 0$

<0, -1 < a < 1. Следовательно, исходное уравнение на $x \in]-\infty; -3[$ имеет один корень x_1 при $a \in]-1; 1[$, на остальных a корней не имеет.

2)
$$-3 \le x \le 1$$
. $x+3+a(x-1)=4 \Rightarrow (a+1)x=a+1$. (*).

При a=-1 решением уравнения (*) является любое x; т. е. $x \in \mathbb{R}$, но мы решаем на $x \in [-3; 1]$. Если $a \neq -1$, то уравнение (*) имеет один корень x=1.

3)
$$1 < x < +\infty$$
, $x+3-a(x-1)=4 \Rightarrow (1-a)x=1=a$. (**)

При a=1 решением уравнения (**) является любое число, т. е. $x \in \mathbb{R}$, но мы решаем на $x \in]1; +\infty[$. Если $a \neq 1$, то x=1, но $x \in]1; +\infty[$.

Ответ: При |a| < 1 $x_1 = \frac{7+a}{a-1}$ и $x_2 = 1$; при a = 1 x > 1; при a = 1

$$=-1$$
 $x \in [-3; 1]$; при $|a| > 1$ $x = 1$. \blacktriangle

Пример 6. Решить неравенство

$$|x-a| + |x+a| < b, \ a \ne 0.$$

 \triangle Для решения этого неравенства с двумя параметрами a и b воспользуемся геометрическими соображениями. На рис. 1 построены графики функций f(x) = |x-a| + |x+a| и y=b. Очевидно, что при b < 2|a| прямая y=b проходит не выше горизонтального отрезка кривой y=|x-a|+|x+a| и, следовательно, неравенство в этом случае не имеет решений (рис. 1, a). Если же b > 2|a|, то прямая y=b пересекает график функции y=f(x) в двух точках (-b/2; b) и (b/2; b) (рис. 1, b) и неравенство

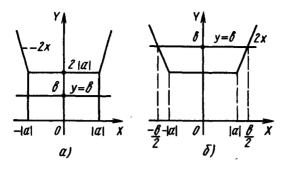


Рис. 1

в этом случае справедливо при $x \in]-b/2; b/2[$, т. к. кривая y = f(x) расположена под прямой y = b.

Ответ: Если $b \le 2|a|$, решений нет; если b > 2|a|, то $x \in]-b/2;$ b/2[. \blacktriangle

Пример 7. Найти все значения а, при которых уравнение

$$a^{3} + a^{2}|a + x| + |a^{2}x + 1| = 1$$
 (1)

имеет не менее четырех различных решений, являющихся целыми числами.

△ Уравнение [1] можно записать в виде

$$|a^2x + 1| + |a^3 + a^2x| = a^2x + 1 - (a^3 + a^2x).$$

Из свойств абсолютной величины следует, что равенство |A|+|B|=A-B, справедливо тогда и только тогда, когда $A\geqslant 0$ и $B\leqslant 0$. Следовательно, уравнение (1) равносильно системе неравенств

$$\begin{cases} a^2x + 1 \geqslant 0\\ a^3 + a^2x \leqslant 0. \end{cases} \tag{2}$$

Значение a=0 удовлетворяет условию задачи, так как в этом случае система (2), а следовательно, и уравнение (1) имеют решением всех $x \in \mathbb{R}$.

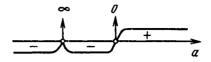
Пусть $a \neq 0$. Тогда система неравенств (2) равносильна системе

$$\begin{cases} x \geqslant -a^{-2} \\ x \leqslant -a. \end{cases} \tag{3}$$

Таким образом, необходимо найти все такие значения a, при которых система (2) имеет не менее четырех различных решений, являющихся целыми числами. Сравним числа -a и $-1/a^2$. Найдем их разность:

$$\frac{-1}{a^2} - (-a) = \frac{-1}{a^2} + a = \frac{-1 + a^3}{a^2} = \frac{(a-1)(a^2 + a + 1)}{a^2}.$$

Так как $a^2+a+1>0$ при любом a, то a^2+a+1 на знак разности сравниваемых чисел не влияет. Согласно методу интервалов имеем:



если a<1, $a\neq 0$, то $-a^{-2}<-a$; если a=1, то $-a^{-2}=-a=-1$; если a>1, то $-a^{-2}>-a$.

Следовательно:

- а) если a > 1, то система (3) решений не имеет, поэтому и исходная задача решений не имеет;
- б) если a=1, то из (3) $\Rightarrow x=-1$, т. е. имеется единственное решение, и условия задачи не выполнены;
- в) если 0 < a < 1, то -1 < -a < 0. Поэтому отрезок $[-a^{-2}; -a]$ будет содержать не менее четырех целых чисел, если справедливо неравенство $-a^{-2} \leqslant -4$. Решим систему

$$\begin{cases} 0 < a < 1 \\ -1/a^2 \le -4 \end{cases} \Leftrightarrow \begin{cases} 0 < a < 1 \\ 1 - 4a^2 \ge 0 \end{cases} \Leftrightarrow \begin{cases} 0 < a < 1 \\ (1/2 - a)(1/2 + a) \ge 0 \end{cases} \Leftrightarrow \begin{cases} 0 < a < 1 \\ -1/2 \le a \le 1/2 \end{cases} \Rightarrow 0 < a \le 1/2.$$

Итак, если $0 < a \le 1/2$, то исходное уравнение имеет не менее четырех различных решений, являющихся целыми числами.

г) если -1 < a < 0, то 0 < -a < 1 и отрезок $[-a^{-2}; -a]$ будет содержать по крайней мере четыре целых числа, если справедливо неравенство $-a^{-2} \le -3$. Решим систему

$$\begin{cases} -1 < a < 0 \\ -\dot{a}^{-2} \leqslant 3 \end{cases} \Leftrightarrow \begin{cases} -1 < a < 0 \\ -1 \leqslant -3a^2 \end{cases} \Leftrightarrow \begin{cases} -1 < a < 0 \\ 3a^2 - 1 \leqslant 0 \end{cases} \Leftrightarrow \begin{cases} -1 < a < 0 \\ (a - 1/\sqrt{3})(a + 1/\sqrt{3}) \leqslant 0 \end{cases} \Leftrightarrow \begin{cases} -1 < a < 0 \\ -1/\sqrt{3} \leqslant a \leqslant 1/\sqrt{3} \end{cases} \Rightarrow \frac{-\sqrt{3}}{3} \leqslant a < 0.$$

Итак, если $-\sqrt{3}/3 \leqslant a < 0$, то уравнение имеет не менее четырех целых решений;

- д) если a=-1, то отрезку [-1; 1] принадлежат только три целых решения, т. е. условия задачи не выполнены;
- е) если a < -1, то $-1 < -a^{-2} < 0$ и для того чтобы отрезку $[-a^{-2}; -a]$ принадлежало не менее четырех целых чисел, необходимо выполнение неравенства $-a \ge 3$, т. е. неравенства $a \le -3$. Итак, при $a \le -3$ исходное уравнение имеет не менее четырех целых решений.

Объединяя все результаты, получаем множество искомых значений числа a — промежуток (— ∞ ; — 3) и отрезок [— $\sqrt{3}/3$; 1/2]. \blacktriangle

Пример 8. Найти все значения параметра a, при каждом из которых уравнение $x-a=2|2|x|-a^2|$ имеет три различных корня. Найти эти корни.

 \triangle При a=0 данное уравнение имеет вид x=4|x|, т. к. это уравнение имеет один корень x=0, то значение a=0 не удовлетворяет условию задачи.

Рассмотрим функцию $f(x)=2|2|x|-a^2|-x+a$, где a- не-которое фиксированное отличное от нуля число.

Если x принадлежит множеству $x\leqslant -a^2/2$, то $2|x|-a^2==-2x-a^2\geqslant 0$ и $f(x)=2(-2x-a^2)-x+a=-5x-2a^2+a$; если $x\in [-a^2/2;\ 0]$, то $2(x)-a^2=-2x-a^2\leqslant 0$ и $f(x)=2(2x+a^2)-x+a=3x+2a^2+a$; если $x\in [0;\ a^2/2]$, то $2(x)-a^2=2x-a^2\leqslant 0$ и $f(x)=2(-2x+a^2)-x+a=-5x+2a^2+a$; если $x\in [a^2/2;\ +\infty[$, то $2(x)-a^2=2x-a^2\geqslant 0$ и $f(x)=2(2x-a^2)-x+a=3x-2a^2+a$.

Рассматривая найденные выражения для f(x), видим, что на промежутке $x \in [-\infty; -a^2/2]$ функция f(x) монотонно убывает, на промежутке $x \in [-a^2/2; 0]$ — монотонно возрастает, на промежутке $x \in [0; a^2/2]$ — монотонно убывает и на промежутке $x \in [a^2/2; +\infty)$ — монотонно возрастает. Это означает, что на указанных промежутках исходное уравнение имеет не более одного корня и что наименьшее значение функции f(x) на множестве $x \geqslant 0$ равно $f\left(\frac{a^2}{2}\right) = -\frac{a^2}{2} + a$, а на множестве $x \leqslant 0$

наименьшее значение f(x) равно $f\left(-\frac{a^2}{2}\right) = \frac{a^2}{2} + 2$.

Если значение a таково, что f(0) < 0 (рис. 2), то на промежутках $-a^2/2 \le x \le 0$, $0 \le xa^2/2$ функция f(x) отрицательна, и, значит данное уравнение на этих промежутках не имеет корней.

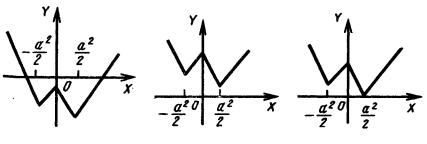


Рис. 2

Рис. 3

Рис. 4

Отсюда по доказанному выше следует, что данное уравнение имеет не более двух корней. Следовательно, искомые значения параметра a удовлетворяют неравенству $f(0) \ge 0$.

Если $f(0)=2a^3+a=0$, то ввиду предположения, что $a\neq 0$ имеем a=-1/2. При a=-1/2 находим $f\left(-\frac{a^2}{2}\right)=\frac{1}{8}-\frac{1}{2}<0$, $f\left(\frac{a^2}{2}\right)=-\frac{1}{8}-\frac{1}{2}<0$. Отсюда следует,

что при a=-1/2 на каждом из промежутков $-\infty < x \le -a^2/2$, $a^2/2 \le x < +\infty$ исходное уравнение имеет по одному корню:

$$x_1 = \frac{-2a^2 + a}{5} = -\frac{1}{5}; \quad x_2 = \frac{2a^2 - a}{3} = \frac{1}{3}.$$

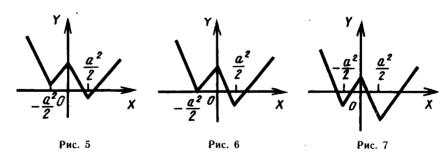
Третий корень $x_3 = 0$ принадлежит как промежутку $-a^2/2 \le x \le 0$, так и промежутку $0 \le x \le a^2/2$. Таким образом, значение a = -1/2 удовлетворяет условию задачи. Далее будем считать, что фиксированное число $a(a \ne 0)$ удовлетворяет неравенству f(0) > 0. Отметим, еще, что при $a \ne 0$

$$f\left(\frac{a^2}{2}\right) = -\frac{a^2}{2} + a < \frac{a^2}{2} + a = f\left(-\frac{a^2}{2}\right).$$

Если $f(a^2/2) > 0$, то $f(-a^2/2) > 0$, и поэтому функция f(x) положительная для всех x (рис. 3). Но это означает, что исходное уравнение не имеет корней.

Если $f(a^2/2) = 0$, то $f(-a^2/2) > 0$, и поэтому функция f(x) обращается в нуль лишь в точке $x = a^2/2$ (рис. 4). Это означает, что исходное уравнение имеет один корень.

Если $f(a^2/2) < 0$, но $f(-a^2/2) > 0$, то функция f(x) обращается в нуль лишь в одной точке каждого из интервалов $0 < x < a^2/2$ и $a^2/2 < x < + \infty$. А это означает, что исходное уравнение имеет два корня (рис. 5).



Если $f(a^2/2) < 0$ и $f(-a^2/2) = 0$, то функция f(x) обращается в нуль в точке $-a^2/2$ и еще в двух точках: одной в интервале $0 < x < a^2/2$ и другой в интервале $a^2/2 < x < +\infty$ (рис. 6).

Следовательно, исходное уравнение имеет три корня. Это возможно, когда a удовлетворяет условиям:

$$\left\{\begin{array}{l} \mathit{f}(0)\!>\!0 \\ \mathit{f}(a^2/2)\!<\!0 \\ \mathit{f}(-a^2/2)\!=\!0, \end{array}\right.$$
 т. е. условиям
$$\left[\begin{array}{c} 2a^2\!+\!a\!>\!0 \\ -\frac{a^2}{2}\!+\!a\!<\!0 \\ a^2/2\!+\!a\!=\!0 \end{array}\right.$$

Легко видеть, что этим условиям удовлетворяет лишь a=-2. Наконец, если $f(a^2/2)<0$ и $f(-a^2/2)<0$ (рис. 7), то исходное уравнение имеет 4 корня.

Ответ: a = -2, a = -1/2; при a = -2: $x_1 = -2$, $x_2 = 6/5$,

 $x_3 = 10/3$; при a = -1/2: $x_1 = -1.5$, $x_2 = 0$, $x_3 = 1/3$.

Упражнения

- 1. Для каждого значения a решить уравнения:
- 1) 2|x| + |a| = x + 1; 2) |x a + 1| + |x 2a| = x; 3) |x + 3| = -a.

Ответ: 1)
$$a = \pm 1$$
 $x = 0$; $|a| < 1$, $x = 1 - |a|$, $x = \frac{|a| - 1}{3}$;

- 2) a < 1 нет решений; a = 1 x = 2; a > 1, x = a + 1, x = 3a 1;
- 3) a>0 нет решений; a=0 x=-3; a<0 x=a-3 и x=-a-3.
- 2. Для каждого значения параметра a найти все значения x, удовлетворяющие уравнениям:
 - 1) a|x+3|+2|x+4|=2
 - 2) 3|x-2|-a|2x+3|=21/2

Ответы: 1)
$$a = 2$$
, $-4 \leqslant x \leqslant -3$; $a = -2$, $x \geqslant -3$; $|a| > 2$, $x = -3$; $|a| < 2$, $x_1 = -3$, $x_2 = -\frac{3a+10}{2+a}$.

2)
$$a = \frac{3}{2}$$
, $x \le -\frac{3}{2}$; $a = -\frac{3}{2}$, $-\frac{3}{2} \le x \le 2$; $|a| > \frac{3}{2}$, $x = -\frac{3}{2}$; $|a| < \frac{3}{2}$, $x_1 = -\frac{3}{2}$, $x_2 = \frac{6a + 33}{6 - 4a}$.

3)
$$x \leqslant 3$$
 при $a=-1$; $-3 \leqslant x \leqslant 2$ при $a=1$; $x=\{-3\}$ при $|a|>1$; $x \in \left\{-3; \frac{7-3a}{a+1}\right\}$ при $|a|<1$.

- 3. Для всех а решить неравенства.
- 1) $|3x-a|+|2x+a| \le 5$;
- 2) |x-3a|-|x+a|<2a;
- 3) |x-a|-2a>|x-3a|;
- 4) |x+2a|+|x-a|<3x;
- 5) $|x-1| \ge ax$;
- 6) $|x-a| \leqslant x$;
- 7) $|x+a| \leq x$;
- 8) $|ax| \geqslant 1 + x$;

- (9) $|2x+a| > \frac{3a}{2} |x-a|$;
- 10) |1-|x|| < a-x;
- 11) $|x-a| \geqslant x$;
- 11) $|x-a| \ge x$, 12) $|x-a| + |x| + |x+a| \le b$.

Ответы: 1) $2 < a \le 3$, $x \in [2a-5; 1]$; $|a| \le 2$, $x \in [-1; 1]$; $-3 \le a \le -2$, $x \in [-1; 2a+5]$; |a| > 3, $x \in \emptyset$.

- 2) $a < 0, x \in]-\infty; 2a[; a=0, x \in \emptyset; a>0, x \in]0; +\infty[;$
- 3) a < 0, $x \in]-\infty$; $a[; a \ge 0, x \in \emptyset$.
- 4) $a < 0, x \in]-a; +\infty [; a \ge 0, x \in]a; +\infty [.$ 5) $a < -1, x \in [\frac{1}{a+1}; +\infty [; -1 \le a \le 0, x \in R; 0 < a \le 1 x \in]a;$
- $\begin{cases}
 \left(-\infty; \frac{1}{1+a}\right] \cup \frac{1}{1-a}; +\infty [; a > 1, x \in] -\infty; \frac{1}{1+a}
 \end{cases}.$ 6) $a \le 0, x \in \mathbb{R}; a > 0, x \in] -\infty; a/2$.
 - 7) $a \le 0, x \in [-a/2; +\infty[; a>0, x \in \emptyset].$ 8) $a=0, x=-1; 0<|a| \le 1, x \in]-\infty; \frac{-1}{1+|a|}; |a|>1,$

$$x \in]-\infty; \frac{-1}{1+|a|} \cup \left[\frac{1}{|a|-1}; +\infty\right].$$

- 9) $a \le 0$, $x \in]-\infty$; $-\frac{a}{2}[\cup]-\frac{a}{2}$; $+\infty[; a>0, x \in]-\infty$;
- $-\frac{7a}{2}[\bigcup]\frac{a}{2}; +\infty [.$
- 10) $a \leqslant -1$ решений нет; $-1 < a \leqslant 1$, $x \in]-\infty$; $\frac{a-1}{2}[$; a > 1, $x \in]\frac{a+1}{2}$; $+\infty$ [.
- 11) $a \le 0, x \in \mathbb{R}; a > 0, x \in]-\infty; a/2].$
- 12) Если b < 2|a|, то решений нет; если $2|a| \le b \le 3|a|$, то $x \in [-b+2|a|;\ b-2|a|]$; если b > 3|a|, то $x \in [-b/3;\ b/3]$.
- 4. Найти все значения a, при которых уравнения имеют три различных корня. Найти эти корни:
- 1) $x-a/2=4|4|x|-a^2|$, 2) $x-a/3=9|9|x|-a^2|$,
- 3) $x-a/2=2|2|x|=a^2|.$

Ответы: {-1; 15/17; 17/15} при a=-2; $\left\{-1/136; 0; \frac{1}{120}\right\}$ при a=-1/8;

- 2) $\{-1; 41/40; 40/41\}$ при $a=-3; \{-1/3321; 0; 1/3240\}$ при a=-1/27;
- 3) $\{-1/2; 3/10; 5/6\}$ при $a=-1; \{-1/20; 0; 1/12\}$ при a=-1/4.
 - 5. Решить уравнения
- 1) |x-a|+|x+a+1|=3; 2) |x|=1-|a|, 3) ||x|-|a||=1.

Ответы: 1) При a < -2 решений нет; при a = -2 и a = 1

 $x \in [-2; 1];$ при -2 < a < 1 $x_1 = -2$, $x_2 = 1$; при a > 1 решений нет.

2) При a<-1 решений нет; при a=-1 x=0; при -1< a<0 $x_1=a+1$, $x_2=-a-1$; при $0\leqslant a<1$ $x_1=1-a$, $x_2=a-1$; при

a=1 x=0; при a>1 решений нет.

3) Π pu $-\infty < a < -1$ $x_1 = -a + 1$, $x_2 = -a - 1$; $x_3 = a + 1$, $x_4 = a - 1$; Π pu a = -1 $x_1 = 0$, $x_2 = a - 1$, $x_3 = -a + 1$; Π pu -1 < a < 0 $x_1 = -a + 1$, $x_2 = a - 1$; Π pu $0 \le a \le 1$ $x_1 = -a - 1$, $x_2 = a + 1$; Π pu a = 1 $x_1 = 0$, $x_2 = -a - 1$, $x_3 = a + 1$; Π pu $1 < a < +\infty$ $x_1 = -a + 1$, $x_2 = -a - 1$, $x_3 = a + 1$, $x_4 = a - 1$.

4. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ

Справочный материал

Уравнение вида $ax^2 + bx + c = 0$, где a, b, c — числа, причем $a \neq 0$ называется квадратным уравнением. Напомним, что $D = b^2 - 4ac$ называется дискриминантом квадратного трехчлена. Если D < 0, то уравнение не имеет корней.

Если D > 0, то уравнение имеет два различных корня

$$x_1 = \frac{-b + \sqrt{D}}{2a}, \quad x_2 = \frac{-b - \sqrt{D}}{2a},$$

 $\underline{\mathbf{H}}$ тогда $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

Если D=0, то уравнение имеет два совпадающих корня $x_1=x_2=-\frac{b}{2a}$ и тогда $ax^2+bx+c=a(x-x_1)^2$.

В случае, когда b есть четное число, т. е b=2k, корни квадратного уравнения определяются по формуле:

$$x_{1,2} = \frac{-k \pm \sqrt{k^2 - ac}}{a}.$$

Для решения приведенного квадратного уравнения $x^2 + px + q = 0$ используется формула

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q},$$

а также формулы Виета:

$$p = -(x_1 + x_2), q = x_1 x_2.$$

Условия параметрических квадратных уравнений разнообразны. Например, найти значение параметра, при котором корни положительны, отрицательны, имеют разный знак, больше или менькакого-либо числа и т. д. Для решения их следует использовать свойства корней квадратного уравнения $ax^2 + bx + c = 0$.

- 1. Если D>0, a>0, то уравнение имеет два действительных различных корня, знаки которых при c>0 одинаковые и противоположны знаку коэффициента b, а при c<0 разные, причем по абсолютной величине больше тот из корней, знак которого противоположен знаку коэффициента b.
- 2. Если D=0, a>0, то уравнение имеет действительные и равные между собой корни, знак которых противоположен знаку коэффициента b.

3. Если D < 0, a > 0, то уравнение не имеет действительных

корней.

Аналогично можно установить свойства корней квадратного уравнения и для a < 0. Кроме того, справедливы следующие утверждения:

- 1. Если в квадратном уравнении поменять местами коэффициенты a и c, то получим уравнение, корни которого обратны корням данного.
- 2. Если в квадратном уравнении поменять знак коэффициента b, то получим уравнение, корни которого противоположны корням данного.

 \dot{a} 3. Если в квадратном уравнении коэффициенты a и c разных знаков, то оно имеет действительные корни.

- 4. Если a>0 и D=0, то левая часть квадратного уравнения есть полный квадрат и, наоборот, если левая часть уравнения есть полный квадрат, то a>0 и D=0.
- 5. Если все коэффициенты уравнения рациональны и дискриминант выражает точный квадрат рационального числа, то корни уравнения рациональны.

Примеры с решениями

Пример 1. Установить при каких а уравнение

$$x^2 - 2(a-1)x + a + 5 = 0$$
:

1) не имеет корней.

Если уравнение не имеет корней, то необходимо и достаточно, чтобы дискриминант D < 0:

$$D = (a-1)^{2} - (a+5) < 0 \Rightarrow a^{2} - 2a + 1 - a - 5 < 0$$

$$a^{2} - 3a - 4 < 0 \quad a_{1,2} = \frac{3 \pm \sqrt{9 + 16}}{2} = \frac{3 \pm 5}{2} = {4 \choose -1}$$

$$-1 < a < 4.$$

2) имеет положительные корни.

Раз корни есть, то D>0, если они оба положительные, то $x_1+x_2>0$ и $x_1x_2>0$. Воспользуемся теоремой Виета, тогда для данного уравнения

$$\left\{ \begin{array}{l} D = (a-1)^2 - (a+5) > 0 \\ x_1 + x_2 = 2 \, (a-1) > 0 \\ x_1 x_2 = a+5 > 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a < -1 & \text{if } 4 < a \\ a > 1 \\ a > -5 \end{array} \right. \Rightarrow a > 4.$$

3) имеет отрицательные корни

$$\begin{cases} D = (a-1)^2 - (a+5) > 0 \\ x_1 + x_2 = a - 1 < 0 \\ x_1 x_2 = a + 5 > 0 \end{cases} \qquad \begin{cases} a < -1 & \text{if } 4 < a \\ a < 1 \\ a > -5 \end{cases}$$

$$5 - < a < -1$$

4) имеет корни разного знака

$$\begin{cases} D > 0 \\ x_1 x_2 = a + 5 < 0 \end{cases} \begin{cases} a < -1 & \text{if } 4 < a \\ a < -5 \end{cases} \quad a < -5$$

5) имеет совпадающие корни

$$D = 0$$
 $a = -1$ и $a = 4$.

Пример 2. Найти все значения параметра a, для которых квадратное уравнение $(a+1)x^2+2(a+1)x+a-2=0$: а) имеет два различных корня; б) не имеет корней; в) имеет два равных корня.

 \triangle Данное уравнение по условию является квадратным, а поэтому $a \neq -1$. Рассмотрим дискриминант данного уравнения

$$D = (a+1)^2 - (a+1)(a-2) = 12(a+1).$$

При a>-1 уравнение имеет два различных корня, т. к. D>0. При a<-1 уравнение корней не имеет, т. к. D<0. Данное квадратное уравнение не может иметь двух равных корней, т. к. D=0 при a=-1, а это противоречит условию задачи. \blacktriangle

Пример 3. Решить уравнение $ax^2 + 2x + 1 = 0$.

 \triangle При a=0 получаем линейное уравнение 2x+1=0, которое имеет единственное решение x=-1/2. При $a\neq 0$ уравнение является квадратным и его дискриминант D=4-4a. При a>1 D<0, поэтому уравнение корней не имеет. При a=1 D=0, поэтому уравнение имеет два совпадающих корня $x_1=x_2=$ $=-\frac{2}{2}$ =-1.

При a < 1, $a \ne 0$ D > 0 и данное уравнение имеет два различных корня:

$$x_1 = \frac{-1 + \sqrt{1 - a}}{a}; \qquad x_2 = \frac{-1 - \sqrt{1 - a}}{a};$$

Ответы: $x_1 = \frac{-1 + \sqrt{1-a}}{a}$, $x_2 = \frac{-1 - \sqrt{1-a}}{a}$ при a < 1 и $a \ne 0$; x = -1/2 при a = 0; $x_1 = x_2 = -1$ при a = 1.

Пример 4. Корни уравнения $x^2 - 3ax + a^2 = 0$ таковы, что $x_1^2 + x_2^2 = 112$. Определить a.

 \triangle По теореме Виета $x_1+x_2=3a$ $x_1x_2=a^2$. Возведем обе части первого равенства в квадрат $x_1^2+x_2^2+2x_1x_2=9a^2$. Учитывая, что $x_1^2+x_2^2=112$, а $x_1x_2=a$, получаем $112+2a^2=9a^2$ или $7a^2=112$, $a^2=16$, $a=\pm 4$. Проверка показывает, что значения $a=\pm 4$ удовлетворяют исходному уравнению. Ответ: $a=\pm 4$.

Пример 5. В уравнении $(k^2-5k+3)x^2+(3k-1)x+2=0$ определить k так, чтобы один из корней был вдвое больше другого. Заметим, что кратное сравнение выполняется только для положительных чисел.

△ По теореме Виета и условию задачи имеем систему:

$$\begin{cases} x_1 + x_2 = \frac{1 - 3k}{k^2 - 5k + 3} \\ x_1 x_2 = \frac{2}{k^2 - 5k + 3} \\ 2x_1 = x_2 (x_1 > 0, x_2 > 0). \end{cases}$$

Подставляя третье уравнение в первое и второе, получим:

$$\begin{cases} 3x_1 = \frac{1-3k}{k^2 - 5k + 3} \\ 2x_1^2 = \frac{2}{k^2 - 5k + 3} \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1-3k}{3(k^2 - 5k + 3)} \\ x_1^2 = \frac{1}{k^2 - 5k + 3}. \end{cases}$$

Следовательно: $\frac{(1-3k)^2}{9(k^2-5k+3)^2} = \frac{1}{k^2-5k+3} \Rightarrow$

$$\frac{(1-3k)^2}{9(k^2-5k+3)} = 1 \Rightarrow 1-6k+9k^2 = 9k^2-45k+27 \Rightarrow 39k = 26,$$

 $k = 2/3$.

Подставим значение k=2/3 в данное уравнение. После упрощений получим уравнение $x^2+9x+18=0$, корни которого $x_1=-6, x_2=-3$ отрицательны и кратно не сравниваются, поэтому данная задача решений не имеет. \blacktriangle

Пример 6. Определить все значения a, при которых уравнение $x^2 + ax + 1 = 0$ и $x^2 + x + a = 0$ имеют хотя бы один общий корень.

 \triangle Пусть общим корнем данных уравнений является x=lpha. Тогда

$$\begin{cases} \alpha^2 + a\alpha + 1 = 0 \\ \alpha^2 + \alpha + a = 0, \end{cases}$$

откуда после вычитания получаем $\alpha(a-1)=a-1$ или $\alpha=1$ при $a\neq 1$. Если $\alpha=1$, то 1+a+1=0 a=-2. Непосредственно убеждаемся, что при a=-2 уравнения имеют общий корень x=1. \blacktriangle

Пример 7. При каком значении a один из корней уравнения $x^2-8x+4a=0$ будет втрое меньше одного из корней уравнения $x^2+x-14a=0$?

 \triangle Пусть первое уравнение имеет корень $x = \alpha(\alpha > 0)$, а второе $x = 3\alpha$. Тогда:

$$\frac{\alpha^2 - 8\alpha + 4a = 0}{9\alpha^2 + 3\alpha - 14a = 0} \Big|^9 \Rightarrow \begin{array}{c} 9\alpha^2 - 72\alpha + 36a = 0\\ 9\alpha^2 + 3\alpha - 14a = 0. \end{array}$$

Откуда после вычитания получаем $75\alpha - 50a = 0$ $\alpha = -\frac{2}{3}a$. Подставим найденное значение в первое уравнение. Тогда $-\frac{4}{9}a^2 - \frac{16}{3}a + 4a = 0 \Rightarrow a^2 - 12a + 9a = 0 \Rightarrow a = 0$ и a = 3. Проверкой по условию задачи убеждаемся, что a = 3.

Пример 8. При каких целых значениях n корни уравнения $nx^2 + (2n-1)x + n - 2 = 0$, где $n \neq 0$, рациональны?

 \triangle Так как все коэффициенты данного квадратного уравнения рациональны, то для решения задачи достаточно определить, при каких целых значениях n дискриминант уравнения будет точным квадратом. Вычислим дискриминант: $D = (2n-1)^2 - 4n(n-2) = 4n+1$.

Корни будут действительными (в том числе и рациональными), если $4n+1\geqslant 0$, или $n\geqslant -\frac{1}{4}$. Поскольку n — целое число и $n\not=0$, то $n=1,\ 2,\ 3...$. Выясним при каких значениях n дискриминант D будет точным квадратом.

Пусть
$$4n+1=k^2$$
, где k — целое число, тогда $n=\frac{k^2-1}{4}=$

$$\frac{(k-1)(k+1)}{4}$$
; n — целое число, если $(k-1)(k+1)$ делится на 4.

Если k четное, то оба сомножителя нечетны и их произведение не делится на 4. Если k нечетное, т. е. k=2m+1, то (k-1)(k+1)=4m(m+1) делится на 4; следовательно, n=m(m+1). Учитывая, что n>0, получаем n=m(m+1), где $m\in N$.

Ответ: уравнение имеет рациональные корни, если n = m(m+1), $m \in \mathbb{N}$. \blacktriangle

Пример 9. Составить квадратное уравнение с рациональными коэффициентами, один из корней которого равен $\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}$.

 \triangle Пусть $x^2 + px + q$ (где p и q — рациональные числа) — искомое уравнение.

Поскольку число
$$\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}=\frac{\left(\sqrt{3}-\sqrt{5}\right)^2}{\left(\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2}=-4+\sqrt{15}$$
 явля-

ется его корнем, то $\left(-4 + \sqrt{15}\right)^2 + p\left(-4 + \sqrt{15}\right) + q = 0$, т. е. $(31 - 4p + q) + (p - 8)\sqrt{15} = 0$.

По условию числа p и q рациональные; поэтому последнее равенство возможно только в том случае, когда одновременно справедливы равенства 31-4p+q=0 и p-8=0. Отсюда получаем p=8, q=1. Итак, примером искомого уравнения служит квадратное уравнение $x^2+8x+1=0$.

Пример 10. При каком m уравнения $2x^2 - (3m+2)x + 12 = 0$

и $4x^2 - (9m - 2)x + 36$ имеют общий корень?

 \triangle Пусть x=a — общее решение уравнений. Тогда

$$\begin{cases} 2a^2 - (3m+2)\,a + 12 = 0 \\ 4a^2 - (9m-2)\,a + 36 = 0, \end{cases} \begin{cases} 4a^2 - 2\,(3m+2)\,a + 24 = 0 \\ 4a^2 - (9m-2)\,a + 36 = 0, \end{cases}$$
 вычитая, получим $(9m-2-6m-4)\,a - 12 = 0 \Rightarrow a = \frac{4}{m-2}$. Подставим в любое данное уравнение $2\frac{16}{(m-2)^2} - (3m+2)\frac{4}{m-2} + 12 = 0 \Rightarrow m = 3.$

Ответ: m = 3.

Упражнения

- 1. Определить число a так, чтобы один из корней уравнения $4x^2-15x+4a^3=0$ был квадратом другого. Ответ: a=3/2, a=-5/2.
- 2. При каких значениях a уравнение $(5a-1)x^2-(5a+2)x+3a-2=0$ имеет равные корни? Ответ: a=2, a=2/35.
- 3. При каком значении m выражение $x^2 + m(m-1)x + 36$ есть полный квадрат? Ответ: m=4 и m=-3.
- 4. В уравнении $x^2 2x + q = 0$ квадрат разности корней равен 16. Определить свободный член уравнения. Ответ: q = -3.
- 5. При каких значениях m уравнение $9x^2-18mx-8m+16=0$ имеет корни, отношение которых равно двум?
- **Ответ**: m = -2, m = 1. 6. Какими должны быть p и q, чтобы уравнение $x^2 + px + q = 0$ имело корнями p и q?

Ответ: $p_1 = 0$, $q_1 = 0$; $p_2 = 1$, $q_2 = -2$.

7. Показать, что уравнение (x-1)(x-3)+m(x-2)(x-4)=0 имеет корни при любом $m \in \mathbb{R}$.

8. При каких целых k корни уравнения $kx^2-(1-2k)x+k=2$ рациональны?

Ответ: k = n(n+1), где $n = 0 \pm 1$, ± 2 ,...

9. При каком значении k корни уравнения $(k-1)x^2-2(k+1)+k+4=0$ равны между собой?

Ответ: k = 5.

10. Определить k так, чтобы один из корней уравнения $x^2-(2k+1)x+k^2+2=0$ был вдвое больше другого.

Other: k=4.

- 11. Дано уравнение $x^2 + px + q = 0$. Составить уравнение с корнями $x_1^2 + x_2^2$ и $x_1^3 + x_2^3$, где x_1 и x_2 корни данного уравнения. Ответ: $x^2 + (p^3 p^2 3pq + 2q)x + (p^2 3q)(3pq p^3) = 0$.
- 12. При каком значении a один из корней уравнения $4x^2-15x+4a^3=0$ есть квадрат другого?

Ответ: a = -2.5, a = 1.5,

13. При каком значении a сумма квадратов корней уравнения $x^2 - ax + a - 1 = 0$ равна 17?

Ответ: a = -3, a = 5.

- 14. При каком действительно значении a сумма квадратов корней уравнения $x^2 + ax + a 2 = 0$ будет наименьшей? Ответ: a = 1.
- 15. При каком целом значении k один из корней уравнения $4x^2-(3k+2)x+(k^2-1)=0$ втрое меньше другого? Ответ: k=2.
- 16. При каком целом значении p уравнения $3x^2-4x+p=0$ и $x^2-2px+5=0$ имеют общий корень? Найти этот корень. Ответ: p=3, x=1.
- 17. Найти все значения a, при которых сумма корней уравнения $x^2-2a(x-1)-1=0$ равна сумме квадратов корней.

Ответ: a = 1, a = 1/2.

18. При каком значении a уравнения $x^2 + ax + 8 = 0$ и $x^2 + x + + a = 0$ имеют общий корень?

Ответ: a = -6.

- 19. В уравнении $x^2 + 2x + c = 0$ определить то значение c, при котором его корни x_1 и x_2 удовлетворяют условию $7x_2 4x_1 = 47$. Ответ: c = -15.
- 20. При каком значении p отношение корней уравнения $x^2 + px 16 = 0$ равно -4?

Ответ: $p_1 = -6$, $p_2 = 6$.

21. При каком целом значении b уравнения $2x^2 + (3b-1) \times x - 3 = 0$ и $6x^2 - (2b-3)x - 1 = 0$ имеют общий корень?

Ответ: b = 2.

- 22. При каком положительном значении c один корень уравнения $8x^2-6x+9c^2=0$ равен квадрату другого? Ответ: c=1/3.
- 23. При каком положительном значении p корни уравнения $5x^2-4(p+3)x+4=p^2$ противоположны по знаку? Найти эти корни.

Ответ: p > 2, $x_1 = p + 2$, $x_2 = (2 - p)/5$.

24. Решить уравнения

- 1) $ax^2 = 1$; 2) $(a-1)x^2 + 2(a+1)x + a 2 = 0$;
- 3) $x^2-2(a-1)x+2a+1=0$;
- 4) $x^2 + 2x 8 a(x 4) = 0$
- 5) $(a+1)x^2 (a-1)x 2a = 0$.

Ответы: 1) $x_1 = -1/\sqrt{a}$ и $x_2 = 1/\sqrt{a}$, если a > 0:

- 2) $x_1 = 1/4$, если a = 1; $x_1 = x_2 = 3/2$, если a = 1/5; $x_1 = \frac{-(a+1) + \sqrt{5a-1}}{a-1}$ и $x_2 = \frac{-(a+1) - \sqrt{5a-1}}{a-1}$, если 1/5 < a < 1a > 1;
- 3) $x_1 = x_2 = -1$, если a = 0; $x_1 = x_2 = 3$, если a = 4; $x_1 = -1$ $=(a-1)+\sqrt{a(a-4)}, \quad x_2=(a-1)-\sqrt{a(a-4)}, \quad \text{если} \quad a<0$ и
- 4) $x_1 = x_2 = 0$, если a = 2; $x_1 = x_2 = 8$, если a = 18; $x_1 = 1$ $=\frac{(a-2)+\sqrt{(a-2)(a-18)}}{2}$ и $x_2=\frac{(a-2)-\sqrt{(a-2)(a-18)}}{2}$, если a<2или a > 18;
- 5) x = -1, если a = -1; $x_1 = x_2 = -1$, если a = -1/3 $x_1 = -1$ и $x_2 = \frac{2a}{a+1}$, если a < -1, -1 < a < -1/3 и a > -1/3.
 - 25. Решить уравнение

$$\frac{x^2+1}{n^2x-2n} + \frac{1}{nx-2} = \frac{x}{n}.$$

Ответ: $x = \frac{n+1}{n-1}$, если $n \neq 1$, $n \neq 0$; x = -1, если n = 1. Уравнение не имеет смысла при n=0.

26. При каких значениях а сумма корней квадратного уравнения $x^2 + (2 - a - a^2)x - a^2 = 0$ равна нулю.

Ответ: a = -2, a = 1.

27. Решить уравнения:

1)
$$2x^2 - (a-1)x + a + 1 = 0$$
, 2) $ax^2 - (a+1)x + a^2 + a = 0$

1)
$$2x^2 - (a-1)x + a + 1 = 0$$
, 2) $ax^2 - (a+1)x + a^2 + a = 0$,
3) $x^2 - ax + 2a + 4 = 0$, 4) $(a+1)x^2 - x + (1-a) = 0$.

Ответы: 1) $x_1 = x_2 = 1 + \sqrt{2}$ при $a = 5 + 4\sqrt{2}$; $x_1 = x_2 = 1 - \sqrt{2}$ при $a=5-4\sqrt{2}$; два разных корня $x_1=rac{a-1+\sqrt{a^2-10a-7}}{4}$ и $x_2 = \frac{a-1-\sqrt{a^2-10a-7}}{4}$ при $a < 5-4\sqrt{2}$ и $a > 5+4\sqrt{2}$;

2)
$$x_1 = x_2 = \frac{4}{\sqrt{17} + 1}$$
 при $a = \frac{1 - \sqrt{17}}{8}$; $x_1 = x_2 = 0$ при $a = -1$; $x_1 = x_2 = \frac{1 + \sqrt{17}}{4}$ при $a = \frac{1 + \sqrt{17}}{8}$; два разных корня $x_1 = \frac{a + 1 + \sqrt{2a + 1 - 3a^2 - 4a^3}}{2a}$ и $x_2 = \frac{a + 1 - \sqrt{2a + 1 - 3a^2 - 4a^3}}{2a}$ при

$$a < -1$$
, $\frac{1-\sqrt{17}}{8} < a < 0$ и $0 < a \frac{\sqrt{17}+1}{8}$;

3)
$$x_1=x_2=2\left(1+\sqrt{2}\right)$$
 при $a=4\left(1+\sqrt{2}\right)$; $x_1=x_2=2\left(1-\sqrt{2}\right)$ при $a=4\left(1-\sqrt{2}\right)$; два разных корня $x_1=\frac{a+\sqrt{a^2-8a-16}}{2}$ и $x_2=\frac{a-\sqrt{a^2-8a-16}}{2}$ при $a<4\left(1-\sqrt{2}\right)$ и $a>4\left(1+\sqrt{2}\right)$;

4)
$$x_1=x_2=2+\sqrt{3}$$
 при $a=-\sqrt{3}/2$; $x_1=x_2=2-\sqrt{3}$ при $a=\sqrt{3}/2$; два различных корня $x_1=\frac{1-\sqrt{4a^2-3}}{2(a+1)}$ и $x_2=\frac{1+\sqrt{4a^2-3}}{2(a+1)}$ при $a<-1$ и $-1< a<-\sqrt{3}/2$ или $a>\sqrt{3}/2$.

28. Найти все значения a, при которых уравнение имеет хотя бы один корень:

1)
$$x^2-2(a-1)x+2a+1=0$$
; 2) $(a-2)x^2-2ax+2a-3=0$. Ответы: 1) $a\leqslant 0$ или $a\geqslant 4$;

2) $1 \le a \le 6$.

29. Найти все значения а, при которых квадратное уравнение имеет два неравных корня:

1) $ax^2 + 2(a+1)x + a + 3 = 0$; 2) $(a-2)x^2 + ax + 1 = 0$. Ответы: 1) a < 0 и 0 < a < 1;

2) |a| > 2.

30. Известно, что квадратное уравнение имеет корни. Не решая уравнения определить знаки его корней:

1) $ax^{2}+2(a+1)x+2a=0$; 2) $(a^{2}-5a+3)x^{2}+(3a-1)x+2=0$. Ответы: 1) оба корня положительны при $1-\sqrt{2}\leqslant a<0$; оба корня отрицательны при $0< a\leqslant 1+\sqrt{2}$ (так как при $a\neq 0$, $D=-4(a^{2}-2a-1)=-4(a-(1-\sqrt{2}))(a-(1+\sqrt{2}))$, при этом, если x_{1} и x_{2} корни уравнения, то $x_{1}x_{2}=2$, а $x_{1}+x_{2}=\frac{-2(a+1)}{a}$.

2) Оба корня положительны при $a<\frac{-17-\sqrt{3}\bar{12}}{2}$ и оба корня отрицательны при $a>\frac{5+\sqrt{13}}{2}$, имеют разный знак при $\frac{-17-\sqrt{3}\bar{12}}{2}< a<\frac{5+\sqrt{\bar{13}}}{2}$.

31. Найти все значения a, при которых квадратное уравнение $(a+2)x^2-2ax-a=0$ имеет два корня, расположенные на числовой прямой симметрично относительно точки x=1.

Ответ: \varnothing (если x_1 и x_2 — корни, симметричные относительно x=1, то $x_1+x_2=2$, кроме того $x_1+x_2=\frac{2a}{a+2}$, поэтому $2=\frac{2a}{a+2}$ это ложно при любом a, поэтому задача решений не имеет).

32. Найти все занчения а, для которых один корень квадратного уравнения $(a^2-5a+3)x^2+(3a-1)x+2=0$ в два раза больше другого.

Ответ: a = 2/3.

33. Найти все значения a, при которых уравнение $x^2 + 3ax + a$ $+a^2=0$ имеет два корня x_1 и x_2 , удовлетворяющие условию $x_1^2 + x_2^2 = 1.75$.

Ответ: $a = \pm 1/2$.

34. Найти все значения а, при которых один из корней уравнения $4x^2 - 15x + 4a^2 = 0$ равен квадрату другого корня.

Ответ: $a = \pm 3\sqrt{6/4}$.

- 35. Найти все значения а, при которых квадратное уравнение имеет корни и определить знаки этих корней:
- 1) $x^2 2(a-1)x + 2a + 1 = 0$; 2) $3ax^2 + (4-6a)x + 3(a-1) = 0$; 3) $(a-3)x^2 2(3a-4)x + 7a 6 = 0$; 4) $(a-2)x^2 2ax + 2a 3 = 0$ =0; 5) $x^2+(3-2a)x-3a+2=0$.

Ответы: 1) Корни разных знаков при a < -1/2, оба корня положительны при $a \ge 4$; оба корня отрицательны при $-1/2 < a \le 0$; один нуль, а другой — отрицательный при a = -1/2; корней нет при 0 < a < 4;

- 2) Оба корня положительны при a < 0 и $1 < a \le 4/3$; корни разных знаков при 0 < a < 1; один нуль, другой положителен при a=1; корней нет при a>4/3;
- 3) Оба корня положительны при $a \le 2$, $1/2 \le a < 6/7$ и a > 3; корни разных знаков при 6/7 < a < 3; один нуль, другой положителен при a=6/7; корней нет при -2 < a < 1/2;
- 4) Оба корня отрицательны при $1 \le a < 3/2$; один нуль, другой отрицателен при a=3/2; корни разных знаков при 3/2 < a < 2; оба корня положительны при $2 < a \le 6$; корней нет при a < 1и a > 6:
- 5) Оба корня отрицательны при a < 2/3; один корень отрицателен, а другой равен нулю при a=2/3; корни разных знаков при a > 2/3.
- 36. Найти все значения параметра а, при которых сумма квадратов корней уравнения $x^2 - (a-2)x - (a+3) = 0$ равна: 1) 9; 2) k^2 .

Ответы: 1) a = 1;

- 2) a=1, если k=3 и k=-3; $a_1=1-\sqrt{k^2-9}$ и $a_2=1+\sqrt{k^2-9}$ при k > 3 и k < -3.
 - 37. Решить уравнение $x^4 + 4a^3x = a^4$.

Ответ:
$$x_1 = 0$$
 при $a = 0$; $x_1 = \frac{\left(-1 - \sqrt{2\sqrt{2} - 1}\right)a}{\sqrt{2}}$ и $x_2 = \frac{\left(-1 + \sqrt{2\sqrt{2} - 1}\right)a}{\sqrt{2}}$ при $a < 0$ и $a > 0$.

38. Решить уравнение $ax^2 + 2x + 1 = 0$.

Ответ:
$$x_1 = \frac{-1 + \sqrt{1-a}}{a}$$
; $x_2 = \frac{-1 - \sqrt{1-a}}{a}$ при $a < 1$, $a \ne 0$; $x = \frac{1}{2}$

=-1/2 при a=0; $x_1=x_2=-1$ при a=1. 39. При каком m уравнения $2x^2-(3m+2)x+12=0$, $4x^2-(9m-2)x+36=0$ имеют общий корень?

Ответ: m = 3.

40. Найти все значения параметра a, для которых квадратные уравнения $(1-2a)x^2-6ax-1=0$ и $ax^2-x+1=0$ имеют по крайней мере один общий корень.

Ответ: a = 2/9.

УТВЕРЖДЕНИЯ О РАСПОЛОЖЕНИИ КОРНЕЙ ПРИВЕДЕННОГО КВАДРАТНОГО УРАВНЕНИЯ

Справочный материал

1. Уравнение $x^2 + px + q = 0$ имеет два положительных корня гогда и только тогда, когда

$$\begin{cases} p^2 - 4q \geqslant 0 \\ p < 0 \\ q > 0. \end{cases}$$

Геометрическая интерпретация. Для того, чтобы данная парабола (рис. 8) — график функции $y = x^2 + px + q$ пересекла

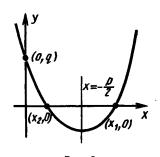


Рис. 8

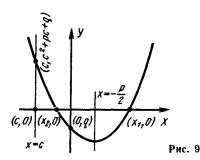
положительную полуось OX в двух точках $(x_1, 0)$ и $(x_2, 0)$ (где $x_1 > 0$ и $x_2 > 0$), необходимо и достаточно выполнение трех условий:

- $\frac{1}{1}$) вершина параболы точка $\left(-\frac{p}{2}, \frac{p^2-4q}{4}\right)$ лежит либо в нижней полуплоскости, либо на оси OX (условие $p^2-4q\geqslant \overset{{}_{\circ}}{0}$);
- 2) ось симметрии параболы прямая $x = -\frac{p}{2}$ лежит правей оси OY (условие p < 0):

- 3) парабола пересекает ось OY в точке (0, q), лежащей в верхней полуплоскости (условие q > 0).
- 2. Уравнение $x^2 + px + q = 0$ имеет два корня, каждый из которых больше некоторого числа c, тогда и только тогда, когда

$$\begin{cases} p^2 - 4q \geqslant 0 \\ -p/2 > c \\ c^2 + pc + q > 0. \end{cases}$$

Геометрическая интерпретация. Для того, чтобы парабола (рис. 9) — график функции $y = \left(x + \frac{p}{2}\right)^2 - \frac{p^2 - 4q}{4}$ — пересек-

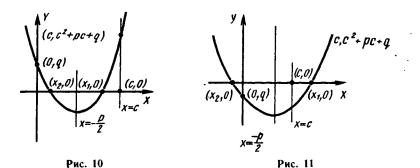


ла ось OX в точках $(x_1, 0)$ и $(x_2, 0)$, лежащих правее точки (c, 0), необходимо и достаточно выполнения трех условий:

- 1) вершина параболы точка $\left(\frac{-p}{2}, \frac{p_2-4a}{4}\right)$ либо лежит в
- нижней полуплоскости, либо на оси OX (условие $p^2-4q\geqslant 0$); 2) ось симметрии параболы прямая x=-p/2 лежит правее прямой x=c (условие p/2>c);
- 3) парабола пересекается с прямой x=c в точке (c, c^2+pc+q) , лежащей в верхней полуплоскости (условие $c^2+pc+q>0$).
- 3. Уравнение $x^2 + px + q = 0$ имеет два корня, каждый из которых меньше некоторого числа c, тогда и только тогда, когда

$$\begin{cases} p^2 - 4q \geqslant 0 \\ -p/2 < c \\ c^2 + pc + q > 0. \end{cases}$$

Геометрическая интерпретация. Для того, чтобы парабола (рис. 10) — график функции $y = \left(x + \frac{p}{2}\right)^2 - \frac{p^2 - 4q}{4}$ пересекла ось OX в точках $(x_1, 0)$ и $(x_2, 0)$, лежащих левее точки (c, 0), необходимо и достаточно выполнения трех условий;



- 1) вершина параболы точка $\left(rac{p}{2};rac{p^2-4q}{4}
 ight)$ лежит либо в
- нижней полуплоскости, либо на оси OX (условие $p^2-4q\geqslant 0$);
- 2) ось симметрии параболы прямая x = -p/2 лежит левее прямой x=c (условие — p/2 < c);
- 3) парабола пересекается с прямой x = c в точке $(c, c^2 + pc + q)$,
- лежащей в верхней полуплоскости (условие $c^2 + pc + q > 0$). 4. Уравнение $x^2 + \rho x + q = 0$ имеет два корня, один из которых больше числа c, а другой меньше c, тогда и только тогда, когда $c^2 + pc + q < 0$.

Геометрическая интерпретация. Для того, чтобы парабола (рис. 11) — график функции $y = (x + \frac{p}{2})^2 - \frac{p^2 - 4q}{4}$ — пересекала ось OX в точках $(x_1, 0)$ и $(x_2, 0)$, между которыми лежит точка (c, 0), необходимо и достаточно, чтобы парабола пересекалась с прямой x=c в точке (c, c^2+pc+q) , которая лежит в нижней полуплоскости (условие $c^2+pc+q<0$).

Примеры с решениями

Пример 1. Найти все значения а, для которых уравнение $x^2-2(a-1)x+(2a+1)=0$ имеет два положительных корня.

 \triangle Для того, чтобы оба корня x_1 и x_2 были положительными, необходимо и достаточно, чтобы дискриминант квадратного трехчлена $x^2-2(a-1)x+2a+1$ был неотрицательным, а произведение x_1x_2 и сумма $x_1 + x_2$ были положительными. Из теоремы Виета получаем, что все a, удовлетворяющие системе

$$\begin{cases} (a-1)^2 - (2a+1) \geqslant 0 \\ 2(a-1) > 0 \\ 2a+1 > 0, \end{cases}$$

и только они, являются решениями поставленной задачи. Эта система равносильна системе

$$\begin{cases} a(a-4) \geqslant 0 \\ a-1 > 0 \\ 2a+1 > 0, \end{cases}$$
 (1)

решением которой, а следовательно, и самой задачи являются все числа a из промежутка [4; $+\infty$ [.

Система (1) может быть получена из геометрических соображений. Заметим, что $x^2-2(a-1)x+2a+1=(x-(a-1)^2-a(a-4))$. При каждом a функции $y=(x-(a-1))^2-a(a-4)$ на плоскости XOY соответствует парабола, ветви которой направлены вверх, пересекающая ось OY в точке (0; 2a+1), имеющая ось симметрии x=a-1 и вершину в точке (a-1; -a(a-4)). Для того, чтобы парабола пересекала положительную полуось OX в двух точках $(x_1; 0)$ и $(x_2; 0)$ или касалась ее, необходимо и достаточно выполнения трех условий:

- 1) вершина параболы точка (a-1; -a(a-4)) либо лежит в нижней полуплоскости, либо на оси OX (условие $a(a-4) \geqslant 0$);
- 2) ось симметрии параболы прямая x=a-1 лежит правее оси OY (условие a-1>0);
- 3) парабола пересекает ось OY в точке (0; 2a+1), которая лежит в верхней полуплоскости (условие 2a+1>0). \blacktriangle

Пример 2. Найти все значения a, при которых уравнение $2x^2-2(2a+1)x+a(a-1)=0$ имеет корни x_1 и x_2 , удовлетворяющие условию $x_1 < a < x_2$.

 \triangle В задаче требуется выяснить, при каких a уравнение имеет два корня, а само число a лежит между этими корнями. Из утверждения 4 получаем решение этой задачи:

$$2a^2 - 2(2a+1)a + a(a-1) < 0 \Rightarrow -a^2 - 3a < 0.$$

Таким образом, искомыми значениями a являются все числа из интервалов a < -3 и a > 0.

Пример 3. Для каких значений m уравнение $4x^2-2x+m=0$ имеет корни, заключенные между -1 и 1?

△ В условии задачи дано полное квадратное уравнение, но т. к. первый коэффициент больше нуля, то график трехчлена — парабола, ветви которой направлены вверх. Поэтому для такого выражения справедливы все утверждения, приведенные выше. Применяя утверждения 2 и 3, получим систему

$$\begin{cases} D = 1 - 4m \ge 0 \\ 4(-1)^2 - 2(-1) + m > 0 \Rightarrow \\ 4(1)^2 - 2(1) + m > 0 \end{cases} \begin{cases} m < \frac{1}{4} \\ m > -6 \Rightarrow -2 < m < \frac{1}{4}. \end{cases}$$

Ответ:
$$m \in \left] -2; \frac{1}{4} \right[$$
 . \blacktriangle

Пример 4. Для каких значений a один из корней уравнения $x^2 - 2ax + 2a^2 - 4a + 3 = 0$ меньше 1, а второй — больше 2?

$$\begin{cases} 1 - 2a + 2a^{2} - 4a + 3 < 0 \\ 4 - 4a + 2a^{2} - 4a + 3 < 0 \end{cases} \Rightarrow \begin{cases} 2a^{2} - 6a + 4 < 0 \\ 2a^{2} - 8a + 7 < 0 \end{cases} \Rightarrow \begin{cases} 1 < a < 2 \\ 2 - \frac{\sqrt{2}}{2} < a < 2 + \frac{\sqrt{2}}{2} \Rightarrow 2 - \frac{\sqrt{2}}{2}a < 2. \end{cases}$$

Ответ:
$$a \in] 2 - \frac{\sqrt{2}}{2}; 2 [.$$

Пример 5. Найти все значения a, при которых трехчлен $y = (a^2 - 1)x^2 + 2(a - 1)x + 1$ принимает положительные значения для всех x.

 \triangle Трехчлен положителен при всех x, если D < 0 и коэффициент при старшей степени положителен, тогда имеем систему:

$$\begin{cases} D = (a-1)^2 - (a^2-1) < 0 \\ a^2 - 1 > 0 \end{cases} \Rightarrow \begin{cases} a^2 - 2a + 1 - a^2 + 1 < 0 \\ a < 1 + a > 1 \end{cases} \Rightarrow \begin{cases} -2a < -2 \\ a < -1 + a > 1 \end{cases} \Rightarrow \begin{cases} a > 1 \\ a > -1 + a > 1 \end{cases} \Rightarrow a > 1.$$

Ответ: a > 1. \blacktriangle

Справочный материал

Если в задаче дано полное квадратное уравнение, то его можно привести, разделив на старший коэффициент, и использовать ранее приведенные утверждения. Но можно и не приводить, а воспользоваться следующими рассуждениями.

Рассмотрим уравнение $ax^2+bx+c=0$ ($a\neq 0$) (1). Обозначим левую часть через f(x), т. е. $f(x)=ax^2+bx+c$. Если уравнение (1) имеет различные корни x_1 , $x_2\in \mathbb{R}$, то f(x) можно представить в виде

$$f(x) = a(x - x_1(x - x_2)(x_1 < x_2).$$

Построим змейку для произведения $(x-x_1)(x-x_2)$:

Если a>0, то f(x)<0 при $x_1< x< x_2$ и f(x)>0 при $x< x_1$ и $x_2< x$.

Если a<0, то f(x)<0 при $x< x_1$ и $x_2< x$ и f(x)>0 при $x_1< x< < x_2$.

Вывод. Если число $x = \alpha$ лежит между корнями квадратного уравнения (1), то левая часть этого уравнения при $x = \alpha$, т. е. $a\alpha^2 + b\alpha + c$ имеет знак, противоположный знаку первого коэффициента a; если число $x = \beta$ лежит вне промежутка корней уравнения (1), то левая часть этого уравнения при $x = \beta$, т. е. $a\beta^2 + b\beta + c$ имеет такой же знак, как и первый коэффициент:

Примеры с решениями

Пример 6. Найти $a \in \mathbb{R}$, при которых корни x_1 и x_2 уравнения $2x^2-2(2a+1)+a(a-1)=0$ удовлетворяют условию $x_1 < a < x_2$.

 \triangle Так как $x_1 \neq x_2$ и $x_1, x_2 \in \mathbb{R}$, то D > 0.

Поскольку a находится между корнями уравнения, то произведение первого коэффициента уравнения на значение левой части уравнения при x=a, должно быть отрицательным, т. е. решение задачи сводится к решению системы неравенств

$$\begin{cases} 4(2a+1)^2 - 8a(a-1) > 0 \\ 2[2a^2 - 2(2a+1)a + a(a-1)] < 0 \end{cases} \Rightarrow \\ \Rightarrow \begin{cases} 4a^2 + 4a + 1 - 2a^2 + 2a > 0 \\ 2a^2 - 4a^2 - 2a + a^2 - a < 0 \end{cases} \Rightarrow \begin{cases} 2a^2 + 6a + 1 > 0 \\ a^2 + 3a > 0 \end{cases} \Leftrightarrow \\ \begin{cases} a < -\frac{3-\sqrt{7}}{2}, \ a > -\frac{3+\sqrt{7}}{2} \\ a < -3 \ \text{if } a > 0 \end{cases} \Rightarrow a < -3, \ a > 0.$$

Ответ: a < -3, a > 0.

Пример 7. Найти все $a \in \mathbb{R}$, при которых оба корня уравнения $(2a+3)x^2+(a+1)x+4=0$ заключены между —2 и 0.

 \triangle Так как x_1 , $x_2 \in \mathbb{R}$, то $D \geqslant 0$. Так как требуется, чтобы $-2 < x_1 < x_2 > 0$, то числа -2 и 0 должны находиться вне промежутка корней, и, кроме того, полусумма корней $\frac{x_1 + x_2}{2}$ должна находиться между данными числами.

Таким образом, решение задачи сводится к решению системы неравенств:

$$\begin{cases} (a+1)^2 - 4 \cdot 4 \cdot (2a+3) \geqslant 0 \\ (2a+3) \left[(2a+3) \cdot (-2)^2 + (a+1) \cdot (-2) + 4 \right] > 0 \\ (2a+3) \left[(2a+3) \cdot 0^2 + (a+1) \cdot 0 + 4 \right] > 0 \\ -2 < -\frac{a+1}{2 \cdot (2a+3)} < 0 \end{cases} \Leftrightarrow \begin{cases} a^2 - 30a - 47 \geqslant 0 \\ (2a+3) \cdot (3a+7) > 0 \\ 2a+3 > 0 \\ 0 < \frac{a+1}{2a+3} < 4. \end{cases}$$

Ответ: $a > 15 + 4\sqrt{17}$.

Пример 8. Найти, при каких значениях a уравнение $(a-2) \times x^2 - 2(a+3)x + 4a = 0$ имеет один корень < 2, а второй — больше 3.

 \triangle По условию $x_1 < 2 < 3 < x_2$, т. е. числа 2 и 3 находятся между корнями, поэтому решение задачи сводится к решению системы неравенств

$$\begin{cases} D = (a+3)^2 - 4a(a-2) > 0 \\ (a-2)[(a-2)2^2 - 2(a+3)2 + 4a] < 0 \Leftrightarrow \\ (a-2)[(a-2)3^2 - 2(a+3)3 + 4a] < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3a^2 - 14a - 9 < 0 \\ (a-2)(a-5) < 0 \Leftrightarrow 2 < a < 5. \end{cases}$$

Ответ: $a \in [2; 5[$.

Пример 9. Найти значения m, при которых $x^2 + mx + m^2 + 6m < 0 \ \forall \ x \in]1; 2[.$

 \triangle Так как коэффициент при x^2 есть 1>0, то трехчлен принимает отрицательные значения между корнями, которые должны быть вне интервала] 1; 2[. Поэтому m должно удовлетворять системе неравенств:

$$\begin{cases} 1+m+m^2+6m<0 \\ 4+2m+m^2+6m<0 \end{cases} \Rightarrow \begin{cases} m^2+7m+1<0 \\ m^2+8m+4<0 \end{cases} \Rightarrow \\ \begin{cases} \frac{-7-\sqrt{45}}{2} < m < \frac{-7+\sqrt{45}}{2} \\ -4-\sqrt{12} < m < -4+\sqrt{12} \end{cases} \Rightarrow -\frac{7+\sqrt{45}}{2} < m < -4+\sqrt{12} \end{cases}$$
 Otbet: $m \in]-\frac{7+\sqrt{45}}{2}; -4+\sqrt{12}[.$

Упражнения

- 1. Найти все значения a, при которых квадратный трехчлен $(a^2-1)x^2+2(a-1)x+2$ положителен для любого x. Ответ: при a<-3 и $a\geqslant 1$.
- 2. Найти все значения a, при которых корни уравнения $x^2-2ax+a^2-1=0$ заключены между числами 2 и 4. Ответ: 1 < a < 7.
- 3. Найти все значения a, при которых корни уравнения $(1+a)x^2-3ax+4a=0$ больше 1.

O_{TBet}:
$$-\frac{16}{7} \leqslant a < -1$$
.

4. Найти все значения a, при которых уравнение $2x^2-2\times$

 $\times (2a+1)x + a(a+1) = 0$ имеет два корня, причем один из них больше a, другой меньше a.

Ответ: a < -1; a > 0.

- 5. Найти все значения a, при которых уравнение $(a-2)x^2-2\times \times (a+3)x+4a=0$ имеет два корня, причем один из них больше числа 3, другой меньше 2. Ответ: 2 < a < 5.
- 6. Найти все значения a, при которых уравнение $4x^2-2x+a=0$ имеет два корня, каждый из которых принадлежит интервалу $]-1;\ 1[.$

Ответ: $-2 < a \le 1/4$.

7. Найти все значения a, при которых все решения неравенства $x^2-a(1+a^2)x+a^4<0$ являются решениями неравенства $x^2+4x+3<0$.

Ответ: $-\sqrt[3]{6} < a < -\sqrt[3]{2}$.

8. Найти все значения a, при которых все решения неравенства $ax^2-2(a^2-3)x-12a\geqslant 0$ являются решениями неравенства $x^2-49\geqslant 0$.

Ответ: $0 < a \le 7/6$.

9. При каких значениях a все решения неравенства $x^2+x-2<0$ являются решениями неравенства $(a^2+6a-4)x^2-2(a-1)x-1<0$?

Ответ: $-3 - \sqrt{13} < a < -2 - \sqrt{7}; -2 - \sqrt{7} < a < -3 + \sqrt{13}; -3 + \sqrt{13} < a < -2 + \sqrt{7}.$

- 10. Найти все значения a, при которых трехчлен $(a^2-1)x^2+2\times (a-1)x+1$ положителен на всех x, являющихся решениями неравенства $x^2-x-2<0$.
- **Ответ:** $a \geqslant 1$. 11. При каких значениях m неравенства $(6m-5)x^2-5 \times (m-1)x+2m-6 > 0$ и $x^2+6x-7 < 0$ имеют хотя бы одно общее решение?

Ответ: m > 255/57.

12. Найти все a, при которых корни уравнения $x^2 + x + a = 0$ действительные и оба больше a.

Ответ: a < -2.

13. При каких a все нули функции $f(x) = (a-2)x^2 + 2ax + a + 3$ лежат в интервале] —2; 1 [?

Ответ:] $-\infty$; -1/4 [0 {2} 0]5; 6].

- 14. При каких значениях a уравнение $(2a-1)x^2+(3-a)x+1=0$ имеет два действительных корня меньше 2? Ответ: a < 1, a > 13.
- 15. Найти все значения a, при которых оба корня уравнения $x^2-2ax+a^2-1=0$ будут находиться в интервале (-2, 4). Ответ: -1 < a < 3.
- 16. Найти все значения k, при которых оба корня уравнения $kx^2-(k+1)x+2=0$ по абсолютной величине меньше 1.

Ответ: $k \ge 3 + 2\sqrt{2}$.

17. При каких значениях k один из корней уравнения $kx^2 + kx - 2 = 0$ по абсолютной величине будет больше 1, а другой — меньше 1?

Ответ: k > 1.

- 18. Найти все значения k, для которых один из корней уравнения $2kx^2-2x-3k-2=0$ будет больше 1, а другой — меньше 1. Ответ: k < -4 или k > 0.
- 19. При каких значениях k корни квадратного трехчлена $(2-k)x^2 - 3kx + 2k$ оба больше 1/2?

Ответ: $16/17 \le k < 2$.

20. Найти все значения k, при которых корни квадратного трехчлена $4x^2 - \frac{8}{3^k}x + \frac{6}{3^k} - 3$ оба меньше 2.

Ответ: $k > \log_3 \frac{10}{2}$.

21. Найти все значения k, при которых корни квадратного трехчлена $\left(2 + \log_{\frac{1}{2}} k\right) x^2 + 5x \log_{\frac{1}{2}} k - 6 \log_{\frac{1}{2}} k$ будут оба больше 1.

Ответ: $2\frac{48}{49} < k < 4$.

22. Найти все значения k, при которых корни уравнения $2x^2 - 3kx + 2 - k = 0$ будут оба ≤ 1 .

Ответ: $\frac{-4+4\sqrt{10}}{9} \leqslant k \leqslant 1$ или $k \leqslant \frac{-4-4\sqrt{10}}{9}$.

23. Найти все значения k, при которых корни уравнения, $(2+k)x^2-2kx+3k=0$ оба положительны.

Ответ: $-3 \le k < -2$.

24. При каком значении a один из корней уравнения $x^2 - 7x +$ +2a=0 будет вдвое больше одного из корней уравнения $x^2 - 5x + a = 0$?

Ответ: a = 6, a = 0.

25. При каких действительных значениях т неравенство $x^2 + mx + m^2 + 6m < 0$ выполняется для любых $x \in \{1; 2\}$?

Ответ: $\frac{-7-\sqrt{45}}{2} \le m \le -4$.

26. При каких m из неравенства $x^2 - (3m+1)x + m > 0$ следует неравенство x > 1?

Other: $m \in \emptyset$.

27. Найти все значения параметра а, при которых из неравенства $ax^2 - x + 1 - a < 0$ следует неравенство 0 < x < 1. **Ответ:** $a \in [1/2; 1]$.

28. Найти все значения параметра а, при которых из неравенства $0 \le x \le 1$ следует неравенство $(a^2 + a - 2)x^2 - (a + 5) \times$ $\times x - 2 \leq 0$.

Ответ: $a \in [-3; 3]$.

29. Найти все значения параметра a, при которых справедливо неравенство $2x^2-4a^2x-a^2+1>0$ при любых |x|<1.

Ответ:
$$a \in \left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$$
.

30. Найти все значения a, при которых любое значение x, удовлетворяющее неравенству $ax^2 + (1-a^2)x - a > 0$, по модулю не превосходит двух.

Ответ: $-2 \le a \le -1/2$.

31. Найти все значения a, при которых из неравенства $0 \le x \le 1$ следует неравенство $(a^2 + a - 2)x^2 - (a + 5)x - 2 \le 0$.

Ответ: $-3 \le a \le 3$.

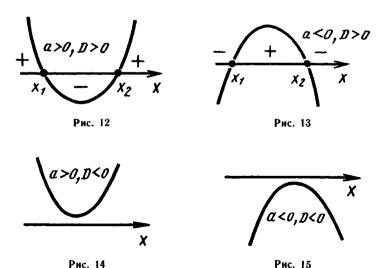
РЕШЕНИЕ КВАДРАТНЫХ НЕРАВЕНСТВ

Справочный материал

Квадратными (строгими и нестрогими) называются неравенства вида:

$$ax^{2} + bx + c > 0$$
, $ax^{2} + bx + c < 0$, $ax^{2} + bx + c \le 0$. $ax^{2} + bx + c \le 0$.

Если квадратный трехчлен имеет корни $(x_1 < x_2)$, то при a>0 он больше нуля, при $x< x_1$ и $x> x_2$ (при x меньше меньшего и больше большего корня) и меньше нуля при $x_1< x< x_2$ (при x от корня до корня) (рис. 12); если a<0, то трехчлен больше нуля при $x_1< x< x_2$; меньше нуля при $x< x_1$ и $x> x_2$ (рис. 13).



Если дискриминант трехчлена D < 0, то при a > 0 он положителен при всех $x \in \mathbb{R}$ (рис. 14), а при a < 0 трехчлен меньше нуля при всех $x \in \mathbb{R}$ (рис. 15).

Примеры с решениями

Пример 1. Решить неравенство $x^2 + ax + 1 > 0$.

 \triangle Дискриминант $D = a^2 - 4$.

Если D < 0, т. е. $a^2 - 4 < 0$, $a^2 < 4 \Rightarrow -2 < a < 2$, то неравенство справедливо $\forall x \in \mathbb{R}$.

Если D > 0, т. е. a < -2 и 2 < a, то корни трехчлена $\frac{-a\pm\sqrt{a^2-4}}{2}$ и решение неравенства $x<\frac{-a-\sqrt{a^2-4}}{2}$ $\frac{-a+\sqrt{a^2-4}}{2} < x.$

Если a = -2 то x < 1 и 1 < x.

Если a=2, то x<-1 и -1< x.

Ответ: $x < \frac{-a - \sqrt{a^2 - 4}}{2}$ и $\frac{-a + \sqrt{a^2 - 4}}{2} < x$ при |a| > 2;

 $x \in \mathbb{R}$ при |a| < 2; a = -2, x < 1 и 1 < x; a = 2, x < -1 и -1 < x.

Пример 2. Для всех $a \ge 0$ решить неравенство $(ax^2 - x + 3) \times$

 $\times (a^2x^2+ax+3a+1)\geqslant 0$ (1) \triangle Дискриминант квадратного трехчлена $a^2x^2+ax+3a+1$ равен $a^2-4a^2(3a+1)=-a^2(12a+3)<0$, следовательно, трехчлен положителен $\forall x \in \mathbb{R}$. Тогда исходное неравенство равносильно неравенству $ax^2 - x + 3 \geqslant 0$ (2). Дискриминант трехчлена $ax^2 - x + 3$ D = 1 - 12a. При $a \ge \frac{1}{12}$ $D \le 0$ и неравенство (2)

справедливо $\forall x \in \mathbb{R}$; при $0 < a < \frac{1}{12}$ D > 0 и неравенство (2)

справедливо при $-\infty < x < \frac{1-\sqrt{1-12a}}{2a}$ и $\frac{1+\sqrt{1-12a}}{2a} < x < \frac{1+\sqrt{1-12a}}{2a}$ $< x < +\infty; a=0-x+3 \ge 0 x \le 3.$

Ответ: a=0, $x \le 3$; 0 < a < 1/12, $x < \frac{1-\sqrt{1-12a}}{2a}$

 $\frac{1+\sqrt{1-12a}}{2a} < x; \frac{1}{12} \le a, \ x \in \mathbb{R}.$

Помимо задач рассмотренного типа, в которых требуется решить неравенство при всех значениях параметра, встречаются задачи, где нужно из всех значений параметра выделить те, при которых неравенство обладает некоторыми задаваемыми свойствами; например, будет выполняться при любом значении переменной или вообще не будет иметь решений, или будет иметь только одно положительное решение и т. д. Рассмотрим задачи такого типа.

Пример 3. При каких значениях k неравенство $\frac{x^2 - kx + 1}{x^2 + x + 1}$ < 3

справедливо при всех значениях х?

 \triangle Так как $x^2 + x + 1$ больше нуля $\forall x \in \mathbb{R}$, то исходное неравенство равносильно такому неравенству $x^2 - kx + 1 < 3 \times (x^2 + x + 1)$ или $2x^2 + (3 + k)x + 2 > 0$. Трехчлен $2x^2 + (3 + k)x + 2$ больше нуля на всех x, если D < 0, т. е. $(3 + k)^2 - 16 < 0 \Rightarrow k^2 + 6k + 9 - 16 < 0 \Rightarrow -7 < k < 1$. Ответ: $k \in]-7$; 1[.

Пример 4. При каких значениях m неравенство $(m+1)x^2-2 \times (m-1)x+3m-3 < 0$ справедливо при всех $x \in \mathbb{R}$?

 \triangle Квадратный трехчлен отрицателен при всех x (рис. 15), если a < 0 и D < 0, т. е.

$$\left\{ \begin{array}{l} m+1 < 0 \\ (m-1)^2 - (m+1)(3m-3) < 0 \end{array} \right. \ \, \left\{ \begin{array}{l} m < -1 \\ m^2 + m - 2 > 0. \end{array} \right.$$

Отсюда находим m < -2. \blacktriangle

Пример 5. При каких значениях m трехчлен $(m-1)x^2 + 2mx + +3m-2$ представляет собой полный квадрат?

 \triangle Квадратный трехчлен будет полным квадратом, если a>0 и D=0, т. е.

$$\left\{ \begin{array}{l} m-1>0 \\ m^2-(m-1)(3m-2)=0 \end{array} \right. \text{ или } \left\{ \begin{array}{l} m>1 \\ 2m^2-5m+2=0. \end{array} \right.$$

Эта система равносильна совокупности двух систем:

$$\begin{cases}
 m > 1 \\
 m = 1/2,
\end{cases}$$

$$\begin{cases}
 m > 1 \\
 m = 2.
\end{cases}$$

Первая система решений не имеет, а из второй получаем m=2. \triangle

Пример 6. Вершина параболы $y=ax^2+bx+c$ имеет координаты x=6, y=-12. Зная, что парабола вогнута и имеет один из нулей при x=8, найти a, b, c.

 \triangle Парабола вогнута — значит a>0. Вершина параболы находится в точке $\left(-\frac{b}{2a}\,;\,\frac{4ac-b^2}{4a}\right)$, т. е. $-\frac{b}{2a}=6$, $a\frac{4ac-b^2}{4}=-12$. При x=8 нуль квадратного трехчлена, т. е. $a8^2+b8+c=0$. Поэтому решение задачи сводится к решению системы

$$\begin{bmatrix} -\frac{b}{2a} = 6\\ \frac{4ac - b^2}{4a^2} = -12 \Rightarrow \begin{cases} b = -12a\\ ac - 36a^2 = -12a \Rightarrow c = 32a \end{cases}$$

$$\Rightarrow \begin{cases} b = -12a \\ 32a^2 - 36a^2 = -12a, \ 4a^2 = 12a, \ a = 3 \\ c = 32a \end{cases}$$

при a > 0, b = -36, c = 96.

Ответ: a=3, b=-36, c=96.

Упражнения

1. Решить неравенства:

1)
$$x^2 + 2x + a > 0$$
, 2) $ax^2 + x + 1 > 0$, 3) $ax > \frac{1}{x}$, 4) $\frac{1}{x} + \frac{1}{x+a} > 0$, 5) $\frac{2a}{x} - \frac{1}{x-1} > 1$, 6) $ax^2 - 2ax - 1 < 0$.

Ответы: 1) При a < 1 $x < -1 - \sqrt{1-a}$, $x > -1 + \sqrt{1-a}$; при a = 1 $x \in \mathbb{R} \setminus \{-1\}$; при a > 1 $x \in \mathbb{R}$;

2) при
$$a<0$$
 $\frac{-1+\sqrt{1-4a}}{2a}< x<\frac{-1-\sqrt{1-4a}}{2a};$ при $a=0$ $x>-1;$ при $0< a<\frac{1}{4}$ $x<\frac{-1-\sqrt{1-4a}}{2},$ $x>\frac{-1+\sqrt{1-4a}}{2a};$ при $a=\frac{1}{4}$ $x\in\mathbb{R};$

- 3) При $a \le 0$; при $a > 0 \frac{1}{\sqrt{a}} < 0$ $x > \frac{1}{\sqrt{a}}$;
- 4) При a<0 $0< x<-\frac{a}{2}$, x>-a; при a=0 x>0; при a>0 $-a< x<-\frac{a}{2}$, x>0;
- 5) При a<0 $a+\sqrt{a^2-2a}< x<1;$ при $0\leqslant a\leqslant 2$ 0< x<1; при a>2 $a-\sqrt{a^2-2a}< x< a+\sqrt{a^2-2a};$

6) При
$$a \leqslant -1$$
 $x < 1 - \sqrt{\frac{1+a}{2}}$, $x > 1 + \sqrt{\frac{1+a}{a}}$; при $-1 < a \leqslant 0$ $x \in \mathbb{R}$; при $a > 0$ $1 - \sqrt{\frac{1+a}{a}} < x < 1 + \sqrt{\frac{1+a}{a}}$.

При каких значениях a неравенства верны при всех x?:

1)
$$\frac{2-ax-x^2}{1-x+x^2} \le 3$$
; 2) $\frac{x^2+ax+1}{x^2+4x+8} < 8$; 3) $\frac{ax^2+3x+4}{x^2+2x+2} < 5$.

Ответы: 1) $-1 \le a < 7$, 2) -10 < a < 74, 3) a < 71/24.

2. При каких значениях a квадратный трехчлен $y = (a^2 + 6a - 4)x^2 - 2(a-1)x - 1$ принимает отрицательные значения при всех $x \in \mathbb{R}$.

OTBET: $-1 - \sqrt{2.5} < a < -1 + \sqrt{2.5}$.

3. Найти все $a \in \mathbb{R}$, при которых трехчлен $y = (a^2 - 1)x^2 + 2 \times (a - 1)x + 1$ принимает положительные значения $\forall x \in \mathbb{R}$. Ответ: a > 1.

- 4. При каких значениях m трехчлен $y = mx^2 + 4x + 3m + 1$ принимает положительные значения при всех x > 0? Ответ: m > 0.
- 5. При каких m трехчлен $y=(6m-5)x^2-5(m-1)x+2m-6$ есть полный квадрат?

Ответ: 5.

6. Найти все значения a, при которых неравенство $ax^2 + (a-1)x + a - 3 < 0$ выполняется при всех $x \in \mathbb{R}$.

Ответ: $a < \frac{5-2\sqrt{7}}{3}$.

7. Для каждого значения a решить неравенство:

1)
$$ax < 1/x$$
; 2) $x^4 - ax^2 + 1 < 0$; 3) $\frac{x-1}{a-1} + x < \frac{1}{1-a}$;

4)
$$\frac{2a+1}{(a-3)x} > \frac{x+2}{x}$$
; 5) $\frac{2a+1}{ax-3x-2a+6} \ge \frac{x}{x-2}$.

Ответы: 1) при $a \le 0$ x > 0; при a > 0 $x < -\frac{1}{\sqrt{a}}$, $0 < x < \frac{1}{\sqrt{a}}$;

$$2) \ \text{при} \ a \leqslant -2 \ \text{решений нет; при} \ a > 2 \ -\sqrt{\frac{a+\sqrt{a^2-4}}{2}} < < < < -\sqrt{\frac{a-\sqrt{a^2-4}}{2}} \ , \ \sqrt{\frac{a-\sqrt{a^2-4}}{2}} < x < \sqrt{\frac{a+\sqrt{a^2-4}}{2}} \ ;$$

- 3) при a < 0 и a > 1 x < 0; при 0 < a < 1 x > 0; при a = 0, a = 1 решений нет;
- 4) при $a < 3\left(\frac{7}{a-3}; 0\right)$; при a = 3 решений нет; при a > 3 $\left(0; \frac{7}{a-3}\right)$;
- 5) при a < 3 [(2a+1)/(a-3);2); при a=3 решений нет; при a > 3 (2; (2a+1)/(a-3)].
- 9. При каких значениях параметра a неравенство $ax^2+4x > 1-3a$ справедливо при всех положительных значениях переменной?

Ответ: $a \ge 1/3$.

РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ С МОДУЛЕМ

Пример 1. Для каждого значения параметра a определить число решений уравнения $\sqrt{2|x|-x^2}=a$

 \triangle Для всех a<0 уравнение не имеет решений, т. к. левая его часть неотрицательна. Для всех a>0 исходное уравнение равносильно уравнению $2|x|-x^2=a^2$ или $2|x|-|x|^2=a^2$. Если |x|=t, то $t^2-2t+a^2=0$, $D=4-4a^2<0$ при a>1 и уравнение не имеет решений. Решения могут быть для $a\in[0;1]$. Проверим крайние точки a=0, $2|x|-x^2=0$ — три решения: x=0, x=2 и

x=-2. Если a=1, то $x^2-2|x|+1=0$ — два решения: $x=\pm 1$. Если $a\in]0;\ 1[$, то $t=1\pm\sqrt{1-a^2}$, $x_{1,2}=\pm(1\pm\sqrt{1-a^2})$ и $x_{3,4}=\pm(1-\sqrt{1-a^2})$.

Ответ: При a < 0 и a > 1 нет решений; при a = 0 три решения; при a = 1 два решения; при $a \in [0; 1]$ четыре решения. \blacktriangle

Пример 2. Найти все значения a, при каждом из которых уравнение x|x+2a|+1-a=0 имеет единственное решение.

 \triangle Используя определение модуля, найдем все решения при каждом a, а затем выберем удовлетворяющее условию задачи.

1) Пусть x+2a<0, т. е. x<-2a, тогда |x+2a|=-(x+2a) и $x^2+2ax+a-1=0$ (1). Найдем дискриминант D_1 уравнения (1) $D_1=a^2-(a-1)>0$ отсюда $\forall a\in \mathbb{R}$, следовательно уравнение (1) имеет два корня: $x_1=-a+\sqrt{a^2-a+1}$ и $x_2=-a-\sqrt{a^2-a+1}$. Выясним лежат ли они в области x<-2a.

$$x_1 < -2a, -a + \sqrt{a^2 - a + 1} < -2a \Leftrightarrow \sqrt{a^2 - a + 1} < -a.$$
 (2)
Неравенство (2) имеет смысл при $a < 0$, тогда
$$\begin{cases} a^2 - a + 1 < a^2 \\ a < 0 \end{cases} \Leftrightarrow \begin{cases} a > 1 \\ a < 0 \end{cases} \Leftrightarrow a \in \emptyset,$$

то есть число $x_{\rm l}$ ни при каких a не принадлежит области $x\!<\!-2a.$

$$x_2 < -2a, -a - \sqrt{a^2 - a + 1} < -2a \Leftrightarrow \sqrt{a^2 - a + 1} > a.$$
 (3)

Ясно, что все a<0 удовлетворяют неравенству (3), а для $a\geqslant 0$ $\begin{cases} a^2-a+1>a^2 \Leftrightarrow \begin{cases} a<1 \\ a\geqslant 0 \end{cases} \Leftrightarrow 0\leqslant a<1.$

Итак, множество решений неравенства (3) есть промежуток a < 1.

При a < 1 исходное уравнение имеет единственное решение $x_2 = -a - \sqrt{a^2 - a + 1}$.

2) Пусть $x+2a\geqslant 0$, $x\geqslant -2a$, тогда |x+2a|=+(x+2a) и $x(x+2a)+1-a=0\Rightarrow x^2+2ax+1-a=0$ (4).

Найдем дискриминант D_2 получившегося квадратного уравнения: $D_2=a^2-(1-a)=a^2+a-1$. Ясно, что уравнение (4) не имеет решений, если $D_2<0$, т. е. $a^2+a-1<0$. Значит уравнение (4) не имеет решений для a из промежутка $\frac{-1-\sqrt{5}}{2}< a<\frac{-1+\sqrt{5}}{2}$. Если a не принадлежит этому интервалу, то урав-

чение (4) имеет корни $x_3 = -a + \sqrt{a^2 + a - 1}$, $x_4 = -a - \sqrt{a^2 + a - 1}$, причем $x_3 = x_4$, при $a = \frac{-1 + \sqrt{5}}{2}$ и $a = \frac{-1 - \sqrt{5}}{2}$.

Выясним теперь, при каких значениях параметра a найденные корни лежат в области $x\geqslant -2a$. Для этого нужно решить неравенства $x_3\geqslant -2a$ и $x_4\geqslant -2a$. Неравенство $-a+\sqrt{a^2+a-1}\geqslant$

 $\geqslant -2a$ (5) равносильно неравенству $\sqrt{a^2+a-1}\geqslant -a$, или совокупности двух систем неравенств

$$\begin{cases} a^2 + a - 1 \geqslant 0 \\ -a < 0 \end{cases} \begin{cases} -a \geqslant 0 \\ a^2 + a - 1 \geqslant a^2. \end{cases}$$

Множество решений первой системы имеет вид $a \geqslant \frac{\sqrt{5}-1}{2}$, вторая система решений не имеет. Значит множество решений неравенства (5) есть промежуток $a \geqslant \frac{\sqrt{5}-1}{2}$, и только при этих значениях параметра a корень x_3 лежит в области $x \geqslant -2a$.

Неравенство $-a-\sqrt{a^2+a-1}\geqslant -2a$ равносильно неравенству $\sqrt{a^2+a-1}\leqslant a$, или системе неравенств

$$\begin{cases} a^2 + a - 1 \geqslant 0 \\ a \geqslant 0 \\ a^2 + a - 1 \leqslant a^2. \end{cases}$$

Множество решений полученной системы неравенств есть отрезок $\frac{\sqrt{5}-1}{2} \leqslant a \leqslant 1$. Только при этих значениях параметра a корень x_4 принадлежит области $x \geqslant -2a$. Таким образом, при $a < \frac{\sqrt{5}-1}{2}$ данное уравнение в области $x \geqslant -2a$ решений не имеет. Если $a = \frac{\sqrt{5}-1}{2}$, то уравнение в рассматриваемой области имеет единственное решение $x_3 = x_4 = -\frac{\sqrt{5}-1}{2}$. При значениях a, лежащих в области $\frac{\sqrt{5}-1}{2} < a \leqslant 1$ исходное уравнение в рассматриваемой области имеет два различных корня x_2 и x_4 . Если же a > 1, то исходное уравнение имеет единственный корень x_3 . Полученные результаты удобно собрать в следующей таблице:

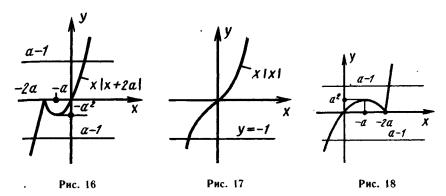
Значения а	Решения данного уравнения
$a<\frac{\sqrt{5}-1}{2}$	x ₂
$a = \frac{\sqrt{5} - 1}{2}$	$x_2, x_3 = x_4 (x_2 < x_3)$
$\frac{\sqrt{5}-1}{2} < a < 1$	$x_2, x_3, x_4(x_3 \neq x_4)$
a = 1	$x_3 = 0, x_4 = -2$
a > 1	x_3

Таким образом, искомые значения a образуют два помежутка: $\sqrt{5}-1$... $\sqrt{5}$

$$a < \frac{\sqrt{5-1}}{2}$$
 и $a > 1$. \blacktriangle

В торое решение. Перепишем исходное уравнение в следующем виде x|x+2a|=a-1 (6) и при фиксированном значении параметра a нарисуем на плоскости XOY график функции y=x|x+2a|.

Рассмотрим несколько случаев:



1) a>0. Тогда -2a<0 и график функции y=x|x+2a| изображен на рис. 16. Вершина параболы имеет координаты $(-a; -a^2)$. Отсюда видно, что прямая y=a-1 пересекает график в одной точке, если a-1>0 или $a-1<-a^2$ и, значит, уравнение (6) имеет единственное решение, если a-1>0 и $a-1<-a^2$. Первое неравенство имеет решения a>1, второе $-\frac{-\sqrt{5}-1}{2}< a<\frac{\sqrt{5}-1}{2}$; из решений второго неравенства в область a>0 попадают только значения из промежутка $0<< a<\frac{-\sqrt{5}-1}{2}$.

2) a=0. В этом случае y=x|x|. График этой функции изображен на рис. 17. Прямая y=-1 пересекает этот график в единственной точке и, значит, уравнение имеет единственное решение x=-1.

3) a < 0. В этом случае -2a > 0 и график функции y = x|x++2a| изображен на рис. 18. В рассматриваемом случае число a-1 отрицательно и, значит, прямая y=a-1 пересекает график функции y=x|x+2a| в одной точке, т. е. уравнение (6) имеет единственное решение при всех a из рассматриваемой области a < 0.

Ответ:
$$a < \frac{\sqrt{5}-1}{2}, a > 1$$

Пример 3. При всех а решить неравенство

$$|x^2 - 5x + 4| < a$$
.

Поскольку $|x^2-5x+4| \ge 0$ при любом x, то при a < 0 неравенство не имеет решения.

Пусть a > 0. Поскольку $x^2 - 5x + 4 = (x - 1)(x - 4)$, то числовая ось (ОДЗ неравенства) разбивается на три промежутка: x < 1, $1 \le x \le 4$, x > 4. Решим неравенство на каждом из них.

Если x < 1, то $x^2 - 5x + 4 > 0$ и в этом случае исходное неравенство равносильно системе

$$\begin{cases} x^2 - 5x + 4 < a \\ x < 1 \end{cases}$$

Дискриминант квадратного трехчлена $x^2-5x+(4-a)$ равен 9+4a и, следовательно, больше нуля при a>0. Из неравенства $x^2-5x+4-a<0$ находим $\frac{1}{2}(5-\sqrt{9+4a})< x<\frac{1}{2}(5+\sqrt{9+4a})$. Проверим как располагаются точки $\frac{1}{2}(5-\sqrt{9+4a})$ и $\frac{1}{2}(5+\sqrt{9+4a})$ относительно x=1 на a>0. $\frac{1}{2}(5-\sqrt{9+4a})<1\Rightarrow 3<\sqrt{9+4a}\Rightarrow 9<9+4a\Rightarrow 0< a$. Т. е. при a>0 эта точка располагается левее точки x=1. Аналогично убеждаемся, что при a>0 $\frac{1}{2}(5+\sqrt{9+4a})>1$, поэтому каждое $x\in]\frac{1}{2}(5-\sqrt{9+4a})$; 1[при всех a>0 есть решение исход-

ного неравенства. Если $x \in [1; 4]$, то $x^2 - 5x + 4 < 0$, исходное неравенство равносильно системе $\begin{cases} x^2 - 5x + 4 + a > 0 \end{cases}$ (*), дискриминант квад- $\{1 \le x \le 4\}$

ратного трехчлена $x^2-5x+4+a$ равен 9-4a. Если a>9/4 (т. е. D<0), тогда неравенство (*) справедливо $\forall x\in \mathbb{R}$, а при $0< a\leqslant 9/4$ решением неравенства (*) все $x\in]-\infty; \frac{1}{2}(5-4)$

 $-\sqrt{9-4a}[\ \]$ $\frac{1}{2}(5+\sqrt{9-4a});+\infty[$. Для того, чтобы найти решения системы, необходимо определить расположение точек $\frac{1}{2}(5-\sqrt{9-4a})$ и $\frac{1}{2}(5+\sqrt{9-4a})$ относительно промежутка [1; 4] при $a\in]0;$ 9/4]. Вычисления показывают, что справедливы неравенства $1<\frac{1}{2}(5-\sqrt{9-4a})\leqslant \frac{1}{2}(5+\sqrt{9-4a})<4$. Отсюда заключаем, что в случае $x\in [1;4]$ при a>9/4 решением исходного неравенства является отрезок $1\leqslant x=4$, при $0< a\leqslant 9/4$ решение неравенства есть $x\in [1;\frac{1}{2}(5-\sqrt{9-4a})[\ \]$ $\frac{1}{2}(5+\sqrt{9-4a});$ 4].

При x > 4 $x^2 - 5x + 4 > 0$ и исходное неравенство равносильно системе

$$\begin{cases} x > 4 \\ x^2 - 5x + 4 - a < a \end{cases} \Leftrightarrow \begin{cases} x > 4 \\ \frac{1}{2} \left(5 - \sqrt{9 + 4a}\right) < x < \frac{1}{2} \left(5 + \sqrt{9 + 4a}\right) \Leftrightarrow 4 < x < \frac{1}{2} \left(5 + \sqrt{9 + 4a}\right).$$

Ответ: При $a \leqslant 0$ исходное неравенство решений не имеет, при $a \in]0;$ 9/4 [имеет решение $x \in]$ $\frac{1}{2}(5-\sqrt{9+4a}); \frac{1}{2}(5-\sqrt{9-4a}) \times \times [\cup]$ $\frac{1}{2}(5+\sqrt{9-4a}) \cdot \frac{1}{2}(5+\sqrt{9+4a})$ [; при a > 9/4 имеет решение $x \in]$ $\frac{1}{2}(5-\sqrt{9+4a});$ $\frac{1}{2}(5+\sqrt{9+4a})$ [.

Полученный ответ геометрически иллюстрируется на рис. 19: положение I соответствует случаю a < 0, положение II— случаю $0 < a \le 9/4$, положение III— случаю $a \ge 9/4$

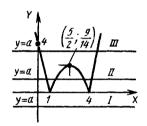


Рис. 13

Пример 4. Найти все значения $a \neq 0$, для которых неравенство $a^2|a+x/a^2|+|1+x| \leq 1-a^3$ имеет не менее четырех различных решений, являющихся целыми числами.

 \triangle Левая часть неравенства неотрицательна при любых значениях a и x, следовательно, неравенство может иметь решение только тогда, когда его правая часть неотрицательна, т. е. при $a^3 \leqslant 1 \Rightarrow a \leqslant 1$. Поскольку $a^2 | a + x/a^2 | = |a^3 + x|$, то исходное неравенство равносильно неравенству $|x + a^3| + |x + 1| \leqslant 1 - a^3(*)$ при $a \leqslant 1$. Решим это неравенство методом интервалов, разбив числовую ось на три интервала:

$$x \le -a^3$$
, $-a^3 < x \le -1$; $u - 1 < x$.

На первом интервале $x < -a^3$, тогда исходное неравенство записывается без знаков модуля $-x-a^3-x-1 \le 1-a^3 \Rightarrow -2x \le 2 \Rightarrow x \ge -1$, т. е. $-1 \le x \le -a^3$.

На втором интервале $-a^3 < x \le 1$ неравенство записывается без знаков модуля $x + a^3 - x - 1 \le 1 - a^3 \Rightarrow 2a^3 \le 2 \Rightarrow a \le 1$, но $-a^3 < 1$ при -1 < a < 1, тогда $-a^3 < x \le 1$ при |a| < 1.

На третьем интервале $1 < x - x + a^3 + x + 1 \le 1 - a^3 \Rightarrow 2x \le -2a^3 \Rightarrow x \le -a^3$, т. е. $x \in \varnothing$.

Итак, имеет решение $-1\leqslant x\leqslant -a^3$ при $a\leqslant 1,\ -a^3 < x\leqslant 1$ при |a|<1. Определим при каких a эти промежутки будут иметь не менее четырех целых решений. На промежутке $-1\leqslant x\leqslant -a^3$ целые решения будут $-1,\ 0,\ 1,\ 2,\$ 3 значит надо, чтобы $-a^3\geqslant 2\Rightarrow a\in]-\infty;\ -\sqrt[3]{2}]$. На втором промежутке при |a|<1 нет четырех целых решений.

Ответ: $a \in]-\infty; -3\sqrt{2}$.

В торое решение. Заменив левую часть неравенства (*) по формуле |a+b|=|a|+|b| при $ab\geqslant 0$, получим $|x+a^3+x+1|\leqslant 1-a^3\Rightarrow |2x+a^3+1|\leqslant 1-a^3\Rightarrow -(1-a^3)\leqslant 2x+a^3+1\leqslant \le 1-a^3\Rightarrow -1\leqslant x\leqslant -a^3$

На промежутке $-a^3 < x \le 1$ воспользоваться предыдущим решением.

Пример 5. Найти все a, при каждом из которых неравенство $3-|x-a|>x^2$ имеет хотя бы одно отрицательное решение.

 \triangle Пусть a — некоторое фиксированное число. Данное неравенство можно переписать в виде $|x-a| < 3-x^2$. Отсюда следует, что оно равносильно двойному неравенству $-(3-x^2) < x-a < 3-x^2$, или равносильно системе неравенств

$$\begin{cases} x - a < 3 - x^2 \\ -(3 - x^2) < x - a. \end{cases}$$

Следовательно, задача может быть переформулирована так: определить те a, при каждом из которых множество решений системы неравенств

$$\begin{cases} x^2 + x - 3 - a < 0 \\ x^2 - x - 3 + a < 0 \end{cases}$$
(*)

содержит хотя бы одно число. Дискриминанты квадратных трехчленов $x^2+x-3-a$ и $x^2-x-3+a$ равны соответственно 13+4a и 13-4a. Для того, чтобы первое и второе неравенство системы (*) имели решения, надо, чтобы были выполнены неравенства 13+4a>0 и 13-4a>0, т. е. $-\frac{13}{4}< a<\frac{13}{14}$. В дальнейшем будем считать, что a удовлетворяет этим неравенствам.

Обозначим через x_1 , x_2 , x_3 , x_4 корни квадратных трехчленов $x^2+x-3-a$ и $x^2-x-3+a$ соответственно. При этом будем считать, что $x_1 < x_2$, $x_3 < x_4$. Так как множества решений первого и второго неравенств системы (*) имеют вид $x_1 < x < x_2$ и $x_3 < x < x_4$, то система (*) будет иметь решение тогда и только

тогда, когда $x_1 < 0$ и $x_3 < 0$ или когда $\frac{1\sqrt{13+4a}}{2} < 0$ и $\frac{1\sqrt{13-4a}}{2} < 0$.

Первое неравенство выполнено для всех $a \in]-13/4; 13/4[$.

Множество решений последнего неравенства есть a < 3.

Итак, система (*) имеет хотя бы одно решение, если параметр a принадлежит множеству -13/4 < a < 3 и только в этом случае.

Ответ: -13/4 < a < 3.

Упражнения

1. Для всех a решить неравенство:

1)
$$|x-2a| < \frac{8a^2}{|x-2a|};$$
 2) $|x^2-1| \le ax;$ 3) $|x^2-1| \ge a;$

4)
$$|x^2-a| \ge x$$
; 5) $2|x-2| < 2ax-x^2-2$; 6) $|x^2-a^2| > 2a^2$.

Ответы: 1) при a < 0 $(2\sqrt{3}a; 2a)$ и $(2a; -2\sqrt{3}a);$ при a = 0 решений нет; при a > 0 $(-2\sqrt{3}a; 2a) \cup (2a; 2\sqrt{3}a);$

2) при
$$a < 0$$
 $\left[\frac{a - \sqrt{a^2 + 4}}{2}; \frac{-a + \sqrt{a^2 + 4}}{2}\right];$ при $a = 0$ $\{-1; 1\};$ при $a > 0$ $\left[\frac{a - \sqrt{a^2 + 4}}{2}; \frac{-a + \sqrt{a^2 + 4}}{2}\right];$

3) при
$$a \le 0$$
 $x \in \mathbb{R}$; если $0 < a < 1$ $\left(-\infty; -\sqrt{1+a}\right] \cup \left[-\sqrt{1-a}; \sqrt{1-a}\right] \cup \left[\sqrt{1-a} + \infty\right]$ при $a = 1$ $\left(-\infty; -\sqrt{2}\right] \cup \{0\} \cup \left[\left[\sqrt{2}; +\infty\right[;$ при $a > 1$ $\left(-\infty; -\sqrt{1+a}\right] \cup \left[\sqrt{1+a}; +\infty\right);$

4) при
$$a < -1/4 \left(-\infty; \frac{-1+\sqrt{1-4a}}{2} \right] \cup \left[\frac{1+\sqrt{1-4a}}{2}; +\infty \right);$$
 при $a = -1/4 \{1/2\};$ при $a > 1/4 x \in \mathbb{R};$

- 5) при $|a| > \sqrt{2} (a+1-\sqrt{a^2-1}; a+1+\sqrt{a^2-1});$ при $|a| \leqslant \sqrt{2}$ решений нет;
- 6) при a < 0 $(-\infty; \sqrt{3a}) \cup (-\sqrt{3a}; +\infty)$; при $a \geqslant 0$ $(-\infty; -\sqrt{3a};) \cup (\sqrt{3a}; +\infty)$.
- 2. Найти все значения a, при каждом из которых уравнение $x^2+4x-2|x-a|+2-a=0$ имеет ровно два различных решения.

Ответ: a < -7/3; -2 < a.

3. Найти все значения a, при каждом из которых уравнение $x \mid x-2a \mid -1-a=0$ имеет единственное решение.

O_{TBET}:
$$-1 < a < \frac{1+\sqrt{5}}{2}$$
.

4. Найти все значения a, при каждом из которых уравнение $x^2-4x-2|x-a|+2+a=0$ имеет ровно два различных решения.

Ответ: a < 2, $\frac{7}{3} < a$;

5. Найти все a, при каждом из которых неравенство $2>>|x+a|+x^2$ имеет хотя бы одно положительное решение.

Ответ: $-\frac{9}{4} < a < 2$.

6. Найти все a, при каждом из которых неравенство $x^2 < 4 - |x+a|$ имеет хотя бы одно отрицательное решение.

Ответ: $-4 < a < \frac{17}{4}$.

7. Найти все a, при каждом из которых неравенство $x^2 + |x-a| < 1$ имеет хотя бы одно положительное решение. Ответ: -1 < a < 5/4.

8. Найти все значения a, при которых неравенство выполняется для всех $x \in \mathbb{R}$.

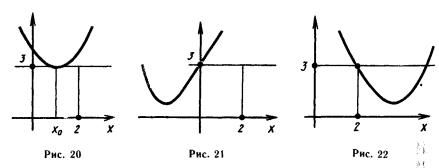
1)
$$\left| \frac{x^2 - ax + 1}{x^2 + x + 1} \right| < 3$$
 2) $\left| \frac{x^2 + ax + 1}{x^2 + x + 1} \right| < 3$.

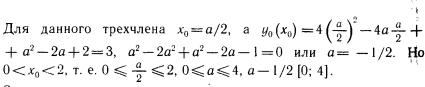
Ответ: 1) -5 < a < 1; 2) -1 < a < 5.

РАЗНЫЕ ЗАДАЧИ

Пример 1. Найти все значения параметра a, при каждом из которых наименьшее значение квадратного трехчлена $4x^2 - 4ax + (a^2 - 2a + 2)$ на отрезке $0 \le x \le 2$ равно 3.

 \triangle Рассмотрим три варианта расположения графика трехчлена на плоскости XOY, удовлетворяющие условию задачи. На рис. 20 вершина параболы имеет координаты $x_0 \in [0; 2]$ и $y_0 = 3$.





Значит этот вариант невозможен.

При втором варианте (рис. 21) вершина параболы расположе. на левее точки x=0, т. е. a/2<0 и a<0. Наименьшее значение трехчлена будет в точке x = 0 и равно 3; т. е. f(0) = 3.

Определим при каких a это возможно $4\cdot 0$ — $4a\cdot 0+a^2-2a+2=3$, $a^2-2a-1=0$, $a_1=1-\sqrt{2}$, $a_2=1+\sqrt{2}$. Так как $a_2>0$, то условию задачи отвечает $a_1=1-\sqrt{2}$.

При третьем варианте (рис. 22) вершина параболы расположена правее точки x=2, т. е. a/2>2. a>4. Наименьшее значение трехчлена будет в точке x=2 равно 3, т. е. $f(2)=3\cdot 4(2)^2$ $-4a \cdot 2 + a^2 - 2a + 2 = 3$, $a_3 = 5 + \sqrt{10}$, $a_4 = 5 - \sqrt{10}$, T. K. $a_4 < 4$, TO условию задачи отвечает $a_3 = 5 + \sqrt{10}$.

Ответ: $1 - \sqrt{2}$; $5 + \sqrt{10}$.

Пример 2. Найти все значения a из промежутка [1; ∞), при каждом из которых больший из корней уравнения

$$x^2 - 6x + 2ax + a - 13 = 0$$

принимает наибольшее значение.

 \triangle Найдем дискриминант D исходного уравнения: D = $=(2a-6)^2-4(a-3)=(2a-7)^2+39$. Поскольку теперь очевидно, что D положителен для любого значения a, то исходное квадратное уравнение имеет два действительных корня.

$$x_1 = (3-a) - \sqrt{a^2 - 7a + 22}$$
 и $x_2 = (3-a) + \sqrt{a^2 - 7a + 22}$.

Задачу теперь можно переформулировать следующим образом: найти все значения параметра а из промежутка $[1; +\infty)$, при каждом из которых выражение $3-a+\sqrt{a^2-7a+22}$ принимает наибольшее значение, т. е. надо найти наибольшее значение функции $f(a) = 3 - a + \sqrt{a^2 - 7a + 22}$ на промежутке [1; $+\infty$). В каждой точке этого промежутка функция f(a) имеет производную

$$f(a) = -1 + \frac{2a - 7}{2\sqrt{a^2 - 7a + 22}} = \frac{2a - 7 - 2\sqrt{a^2 - 7a + 22}}{2\sqrt{a^2 - 7a + 22}}.$$

Так как числитель этой дроби меньше нуля при всех $1 < a < +\infty$ (решите неравенство $2a-7-2\sqrt{a^2-7a+22} < 0$), то f'(a) < 0, т. е. на этом промежутке функция f(a) убывает. Поскольку f(a) непрерывна при a=1, то функция f(a) убывает и на промежутке $[1; +\infty)$. Следовательно, наибольшее значение функции f(a) принимается при a=1.

Ответ: 1. ▲

Пример 3. При каждом значении параметра а решить уравнение

$$(1+a^2)x^2 + 2(x-a)(1+ax) + 1 = 0.$$

🛆 Разложим левую часть уравнения на множители. Для этого представим ее в виде квадратного трехчлена относительно выражения 1 + ax. Имеем

$$\begin{array}{l} (1+a^2)x^2+2(x-a)(1+xa)+1=a^2x^2+x^2+1+2(x-a)(1+ax)=\\ =(a^2x^2+2ax+1)+2(x-a)(1+xa)+x^2-2ax=(ax+1)^2+\\ +2(x-a)(ax+1)+x^2-2ax=(ax+1)^2+2(ax+1)(x-a)+(x-a)^2-\\ -a^2=(ax+1+x+a)^2-a^2=(ax+x-a+1-a)(ax+x+1)=\\ =(ax+x-a+1)(ax+x+1). \end{array}$$

Следовательно, исходное уравнение равносильно совокупности двух уравнений

$$\begin{bmatrix} ax + x - a + 1 = 0 \\ ax + x + 1 = 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x(a+1) - 2a + 1 = 0 \\ x(a+1) + 1 = 0. \end{bmatrix}$$

Решая эту совокупность, находим: при $a \neq -1$ числа $\frac{2a-1}{1+a}$ и $\frac{-1}{1+a}$ являются корнями исходного уравнения; при a=-1 уравнение не имеет корней. \blacktriangle

Пример 4. Для каждого значения $a \ge 0$ решить неравенство $a^3 x_*^4 + 6a^2 x^2 - x + 9a + 3 \ge 0$.

 \triangle Если a=0, то неравенство перепишется в виде $-x+3 \geqslant 0$,

откуда следует, что $x \in]-\infty$; 3].

Пусть теперь a — фиксированное положительное число. Преобразуем левую часть исходного неравенства следующим образом:

$$a^{3}x^{4} + 6a^{2}x^{2} - x + 9a + 3 = a(a^{2}x^{4} + 6ax^{2} + 9) - x + 3 = a(ax^{2} + 3)^{2} - x + 3 = a((ax^{2} + 3)^{2} - x^{2}) + ax^{2} - x + 3 = a(ax^{2} - x + 3)(ax^{2} + x + 3) + ax^{2} - x + 3 = (ax^{2} - x + 3)(a^{2}x^{2} + ax + 3a + 1).$$

Дискриминант квадратного трехчлена $a^2x^2+ax+3a+1$ равен: $D=-a^2(12a+3)$. Так как a — фиксированное положительное число, то ясно, что D<0. Следовательно, квадратный трехчлен $ax^2+ax+3a+1$ положителен для любого значения x, и поэтому исходное неравенство равносильно неравенству

$$ax^2 - x + 3 \geqslant 0 \tag{*}$$

Дискриминант квадратного трехчлена ax^2-x+3 равен 1-12a. Следовательно, при $a\geqslant \frac{1}{12}$ этот дискриминант не положителен, и поэтому множество решений неравенства (*), есть вся числовая прямая. Если же $a\in]0;\ 1/12[$, то множество решений неравенства (*) состоит из двух промежутков; $-\infty < x \leqslant \frac{1-\sqrt{1-12a}}{2a};$ и

 $\frac{1+\sqrt{1-12a}}{2} < x < +\infty$. Эти же множества удовлетворяют и исходному неравенству.

Ответ: При
$$a=0$$
 $x \in]-\infty;$ 3]; при $a \in]0;1/12[x \in]-\infty;\frac{1-\sqrt{1-12a}}{2a}] \cup [\frac{1-\sqrt{1-12a}}{2a};+\infty[;$ при $a \geqslant 1/12, x \in \mathbb{R}$.

Упражнения

1. Найти все значения параметра a, при каждом из которых наибольшее значение квадратного трехчлена

$$-x^2+2ax-(a^2-2a+3)$$

на отрезке $x \in [0; 1]$ равно -2.

Ответ: 1/12; $2+\sqrt{2}$.

2. Найти все значения a из промежутка ($-\dot{\infty}$; -4], при каждом из которых меньший из корней уравнения

$$x^2 + ax - 3x - 2a - 2 = 0$$

принимает наименьшее значение.

Ответ: -4.

- 3. Решить уравнения: 1) $ax^4 x^3 + a^2x a = 0$; 2) $x^4 + 4a^3x = a^4$; 3) $(ax 1)^3 + (a + 1)^3x^2 = 0$; 4) $(2x + a)^5 (2x a)^5 = 242a^5$; 5) $x^4 x^2 + a = 0$; 6) $a^3x^4 + 6a^2x^2 x + 9a + 3 = 0$ 6) $a^3x^4 + 6a^2x^2 - x + 9a + 3 = 0. a \ge 0$: 5) $x^4 - x^2 + a = 0;$ 7) $x^3 + (1 - a^2)x + a = 0;$ 8) $x^3 - 3x = a^3 + 1/a^3;$ 9) $x^4 + 4a^3x = a^4;$ 10) $x^4 + x^3 - 3a^2x^2 - 2a^2x + 2a^4 = 0;$

- 11) $4a^3x^4 + 4a^2x^2 + 32x + a + 8 = 0, a \ge 0.$

Ответы: 1) $x_1 = 0$ при a = 0; $x_1 = -\sqrt[3]{a}$ и $x_2 = 1/a$ при a < 0 и a > 0;

- 2) $x_1 = 0$ при a = 0; $x_{1,2} = \frac{\left(-1 \pm \sqrt{2\sqrt{2} 1}\right)a}{\sqrt{2}}$ при a < 0 и a > 0;
- 3) $x_1 = -1$ и $x_2 = 1$ при a = 0; $x_1 = -1$, $x_{2,3} =$
- $=\frac{-3a-1\pm(a+1)\sqrt{4a+1}}{2a^3}$ при -1/4 < a < 0 и a > 0;
 - 4) $x \in \mathbb{R}$ при a = 0; $x_1 = -a$ или $x_2 = a$ при a < 0 и a > 0;

5)
$$\left\{ \sqrt{\frac{1 \pm \sqrt{1 - 4a}}{2}}; -\sqrt{\frac{1 \pm \sqrt{1 - 4a}}{2}} \right\}$$
 при $0 < a < 1/4$;

$$\{-1;0;1\}$$
 при $a=0;\{-1/\sqrt{2};1/\sqrt{2}\}$ при $a=1/4;\{-\sqrt{\frac{1+\sqrt{1-4a}}{2}};$

$$-\sqrt{\frac{1+\sqrt{1-4a}}{2}}$$
 при $a < 0; x \in \emptyset$ при $a > 1/4;$

6) (3) при
$$a=0$$
; $\left\{\frac{1-\sqrt{1-12a}}{2a}; \frac{1+\sqrt{1-12a}}{2a}\right\}$ при $0 < a < 1/12$;

(6) при a = 1/12.

У казание. $a^3x^4+6a^2x^2-x+9a+3=(ax^2-x+3)(a^2x^2+ax+a)$ -3a+1).

7)
$$\left\{-a; \frac{a+\sqrt{a^2-4}}{2}; \frac{a-\sqrt{a^2-4}}{2}\right\}$$
 при $|a|>2; \{-2; 1\}$ при $a=2; \{-1; -2\}$ при $a=-2; \{-a\}$ при $-2< a<2;$

8) {-1; 2} при
$$a=1$$
; {-2; 1} при $a=-1$; { $a+1/a$ } при $-\infty < a < -1$, $-1 < a < 0$, $1 < a < +\infty$;

9) {0} при
$$a = 0$$
; $\left\{ \frac{a}{\sqrt{2}} \left(-1 + \sqrt{2\sqrt{2} - 1} \right); \frac{a}{\sqrt{2}} \left(-1 - 1 + \sqrt{2\sqrt{2} - 1} \right) \right\}$

$$\left(-\sqrt{2\sqrt{2}-1}\right)$$
 при $a \neq 0$;

10)
$$\left\{-\sqrt{2} \mid a \mid$$
; $\sqrt{2} \mid a \mid$; $\frac{-1+\sqrt{4a^2+1}}{2}$; $\frac{-1-\sqrt{4a^2+1}}{2}\right\}$ при $a \neq 0$; $\{0; 1\}$ при $a = 0$. Указание. Рассматривая уравнение как квадратное относительно a^2 , найти его корни $a_1^2 = x^2 + x$ и $a_2^2 = x^2/2$. Разложить левую часть исходного уравнения на множители: $[a^2 - (x^2 + x)][a^2 - x^2/2] = 0$:

11)
$$\{-1/4\}$$
 при $a=0$; $\left\{\frac{-2-\sqrt{4-2a}}{2a}; \frac{-2+\sqrt{4-2a}}{2a}\right\}$ при $0 < a < 2$; $\{-1/2\}$ при $a=2$.

- 4. Для каждого значения параметра $a \geqslant 0$ решить неравенство

 - 1) $4a^3x^4 + 4a^2x^2 + 32x + a + 8 \ge 0;$ 2) $16a^3x^4 + 8a^2x^2 + 16x + a + 4 \ge 0;$
 - 3) $a^3x^4 + 2a^2x^2 8x + a + 4 \ge 0$.

Ответы: 1) При a=0 $x \in [-1/4]$; $+\infty$ [; при $a \in]0$; $2[x \in]-\infty$; $\frac{-2-\sqrt{4-2a}}{2a}$ [U] $\frac{-2+\sqrt{4-2a}}{2a}$; + ∞ [; при $a\geqslant 2$ $x\in \mathbb{R}$;

2) При
$$a=0$$
 $x\in [-1/4; +\infty[; при $0< a<1$ $x\in]-\infty$, $\frac{-1-\sqrt{1-a}}{2a}[\bigcup]\frac{\sqrt{1-a}-1}{2a}; +\infty[; при $a\geqslant 1$ $x\in R;$$$

3) при
$$a=0$$
 $x \in]-\infty$; $1/2]$; при $0 < a < 1$ $x \in]-\infty$; $\frac{1-\sqrt{1-a}}{a}[\bigcup]\frac{1+\sqrt{1-a}}{a}$; $+\infty[$; при $a \geqslant 1$ $x \in \mathbb{R}$.

5. РЕШЕНИЕ ИРРАЦИОНАЛЬНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ

Справочный материал

При решении параметрических иррациональных уравнений пользуются общими формулами. Пусть f и g —некоторые функции, $K \in N$, тогда:

1)
$${}^{2k}\sqrt{f} \cdot {}^{2k}\sqrt{g}$$
, $= {}^{2k}\sqrt{f \cdot g}$, $f \geqslant 0$, $g \geqslant 0$;

2)
$${}^{2k}\sqrt{f}/{}^{2k}\sqrt{g} = {}^{2k}\sqrt{f/g}, \quad f \geqslant , g > 0;$$

3)
$$|f|^{2k}\sqrt{g} = {}^{2k}\sqrt{f^2g}, \quad g \geqslant 0;$$

4)
$${}^{2k}\sqrt{f/g} = {}^{2k}\sqrt{|f|} {}^{2k}\sqrt{|g|}, \quad fg \geqslant , g \neq 0;$$

5)
$${}^{2k}\sqrt{fg} = {}^{2k}\sqrt{|f|} \cdot {}^{2k}\sqrt{|g|}, fg \geqslant 0.$$

Применяя любую из этих формул формально (без учета указанных ограничений), следует иметь в виду, что ОДЗ левой и правой частей каждой из них могут быть различными. Например, выражение $\sqrt{f} \cdot \sqrt{g}$ определено при f = 0 и g = 0, а выражение $\sqrt{f}g$ — как при $f \geqslant 0$, $g \geqslant 0$, так и при $f \leqslant 0$, $g \leqslant 0$.

Для каждой из формул 1—5 (без учета указанных ограничений) ОДЗ правой ее части может быть шире ОДЗ левой. Отсюда следует, что преобразования уравнения с формальным использованием формул 1—5 «слева—направо» (как они написаны) приводят к уравнению, являющемуся следствием исходного. В этом случае могут появиться посторонние корни исходного уравнения.

Преобразования уравнений с формальным использованием формул 1—5 «справа—налево» недопустимы, так как возможно сужение ОДЗ исходного уравнения, а следовательно и потеря корней.

Уравнение вида

$$\sqrt[2k]{f(x)} = g(x), \ k \in \mathbb{N},$$

равносильно системе

$$\begin{cases} g(x) \geqslant 0 \\ f(x) = g^{2k}(x). \end{cases}$$

Примеры с решениями

Пример 1. Решить уравнение

$$\sqrt{(x+1)(x-2)} = a.$$

 $^{\cdot}$ \triangle Найдем ОДЗ $(x+1)(x-2) \geqslant 0 \Rightarrow x \leqslant -1$ или $2 \leqslant x$. Исходное уравнение равносильно системе

$$\begin{cases} a \geqslant 0 \\ (x+1)(x-2) = a^2 \end{cases} \Rightarrow \begin{cases} a \geqslant 0 \\ x^2 - x - 2 - a^2 = 0. \end{cases}$$

Решим уравнение системы

$$x_1 = \frac{1 - \sqrt{1 + 4 \left(a^2 + 2\right)}}{2} \ \text{ if } \ x_2 = \frac{1 + \sqrt{1 + 4 \left(a^2 + 2\right)}}{2} \,.$$

Эти корни возможны, если дискриминант этого уравнения неотрицателен, т. е. $1+4(a^2+2)\geqslant 0 \Rightarrow 4a^2+9\geqslant 0 \Rightarrow a\in\mathbb{R}$. С учетом условия системы $a\geqslant 0$.

Теперь необходимо проверить при каких значениях *а* корни принадлежат ОДЗ. Здесь возможны следующие случаи.

Оба корня принадлежат $x \le -1$. Видно, что это невозможно, т. к. $x_2 > 0$ при всех $a \ge 0$.

Оба корня принадлежат $x \ge 2$. Но это то же невозможно, т. к. $x_1 < 0$ при всех $a \ge 0$.

Один корень принадлежит множеству $x \le -1$, а другой $x \ge 2$. Решим систему

$$\begin{bmatrix} \frac{1 - \sqrt{1 + 4(a^2 + 2)}}{2} \leqslant -1 \\ 2 \leqslant \frac{1 + \sqrt{1 + 4(a^2 + 2)}}{2} \end{cases} \Rightarrow \begin{cases} 3 \leqslant \sqrt{4a^2 + 9} \\ 3 \leqslant \sqrt{4a^2 + 9} \end{cases} \Rightarrow a \geqslant 0.$$

Ответ: При $a \geqslant 0$ $x = \frac{1 - \sqrt{4a^2 + 9}}{2}$ и $x = \frac{1 + \sqrt{4a^2 + 9}}{2}$; при a < 0 решений нет.

Пример 2. Решить уравнение

$$\sqrt{x+1} \cdot \sqrt{x-2} = a. \tag{*}$$

 \triangle Видно, что это уравнение примера 1, преобразованное по формуле 1 «справа—налево», ОДЗ уравнения (*) $x \geqslant 2$ и его решение такое же как в примере 1 и корни $x_1 = \frac{1 - \sqrt{4a^2 + 9}}{2}$, $x_2 = \frac{1 + \sqrt{4a^2 + 9}}{2}$. Но множеству $x \geqslant 2$ принадлежит только корень x_2 .

Ответ: При $a \geqslant 0$ $x = \frac{1 + \sqrt{4a^2 + 9}}{2}$. \blacktriangle

Пример 3. Решить уравнение $x - \sqrt{a - x^2} = 1$.

△ Приведем два способа решения.

Первое решение. Применим способ возведения в степень с последующей проверкой $x-1=\sqrt{a-x^2}\Rightarrow (x-1)^2=a-x^2\Leftrightarrow 2x^2-2x+1-a=0$ откуда $x_1=\frac{1-\sqrt{2a-1}}{2}$, $x_2=\frac{1+\sqrt{2a-1}}{2}$ при $a\geqslant \frac{1}{2}$. Если a<1/2 то решений нет. Проверим, какие из найденных значений x удовлетворяют исходному уравнению.

Подставляя x_1 в исходное уравнение, получим, что левая часть — $\frac{1+\sqrt{2a-1}}{2}$ отрицательна, а правая $\sqrt{a-\left[\frac{1-\sqrt{2a-1}}{2}\right]^2}$ неотрицательная, так что x_1 не удовлетворяет исходному урав-

нению. Подставим теперь x_2 :

$$\frac{\sqrt{2a-1}-1}{2} = \sqrt{a - \left[\frac{1+\sqrt{2a-1}}{2}\right]^2}.$$

Полученное равенство верно тогда и только тогда, когда $\sqrt{2a-1}-1\geqslant 0$, т. е. $a\geqslant 1$.

Второе решение. Применим способ сведения к равносильной смешанной системе

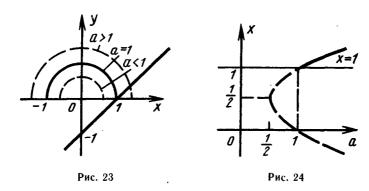
$$x - 1 = \sqrt{a - x^2} \Rightarrow \begin{cases} (x - 1)^2 = a - x^2 \\ x - 1 \ge 0 \end{cases} \Rightarrow \begin{cases} 2x^2 - 2x + 1 - a = 0 \\ x \ge 1. \end{cases}$$

Корни квадратного уравнения: $x_1 = \frac{1 - \sqrt{2a - 1}}{2} < 1$ при всех

$$a \geqslant \frac{1}{2}$$
; a $x_2 = \frac{1 + \sqrt{2a - 1}}{2} > 1 \Leftrightarrow \sqrt{2a - 1} > 1 \Leftrightarrow a \geqslant 1$.

Ответ: При a < 1 решений нет; при $a \geqslant 1$ $x = \frac{1 + \sqrt{2a - 1}}{2}$.

Геометрическая интерпретация решений. На координатной плоскости (XOY) решение уравнения $x-1=\sqrt{a-x^2}$ эквивалентно отысканию точек пересечения прямой линии y=x-1 с полуокружностями $y=\sqrt{a-x^2}$. Из рис. 23 видно, что эти линии пересекаются при $a\geqslant 1$ в единственной точке (т. е. исходное уравнение при $a\geqslant 1$ имеет только одно решение).



Представим теперь графически решение исходного уравнения на координатной плоскости (aOX). Так как уравнение равносильно смешанной системе

$$\begin{cases} a = 2x^2 - 2x + 1 \\ x \geqslant 1, \end{cases}$$

то его решение можно рассматривать как отыскание на координатной плоскости (aOX) точек параболы $a=2x^2-2x+1$, для которых $x\geqslant 1$. Как видно из рис. 24 решение существует при $a\geqslant 1$, причем каждому значению $a\geqslant 1$ соответствует одно рещение (одна точка на параболе, для которой $x\geqslant 1$). \blacktriangle

Пример 4. При каждом значении а решить уравнение

$$\sqrt{a+\sqrt{a+x}}=x$$
.

△ Исходное уравнение равносильно системе

$$\begin{cases} a + \sqrt{a + x} = x^2 \\ x \ge 0. \end{cases}$$

которая в свою очередь равносильна системе

$$\begin{cases} a+x = (x^2-a)^2 \\ x^2-a \geqslant 0 \\ x \geqslant 0, \end{cases}$$
 (*)

Уравнение системы (*) является уравнением четвертой степени относительно x и второй степени относительно a. Переписав его в виде

$$a^2 - (2x^2 + 1)a + (x^4 - x) = 0$$
,

разложим левую часть на множители. Дискриминат квадратного трехчлена относительно a равен:

$$(2x^2+1)^2-4(x^4-x)=4x^2+4x+1=(2x+1)^2$$
,

и, следовательно,

$$a^{2} - (2x^{2} + 1) a + x^{4} - x = \left(a - \frac{(2x^{2} + 1) + (2x + 1)}{2}\right) \times \left(a - \frac{(2x^{2} + 1) - (2x + 1)}{2}\right).$$

Таким образом, исходное уравнение равносильно совокупности двух смешанных систем:

$$\begin{cases} x^2 + x + 1 = a \\ x^2 - a \geqslant 0 \\ x \geqslant 0 \end{cases} \begin{cases} x^2 - x - a = 0 \\ x^2 - a \geqslant 0 \\ x \geqslant 0, \end{cases}$$

т. е. совокупности систем

$$\begin{cases} x^2 - a = -x - 1 \\ -x - 1 \geqslant 0 \end{cases} \begin{cases} x^2 - a = x \\ x \geqslant 0, \end{cases}$$

Первая система этой совокупности решений не имеет. Вторая система совокупности равносильна системе

$$\begin{cases} \left(x - \frac{1 + \sqrt{1 + 4a}}{2}\right) \left(x - \frac{1 - \sqrt{1 + 4a}}{2}\right) = 0\\ x \geqslant 0\\ a \geqslant -\frac{1}{4}, \end{cases}$$

которая равносильна совокупности систем:

$$\begin{cases} -\frac{1}{4} \le a \le 0 \\ x = \frac{1 - \sqrt{1 + 4a}}{2} \\ x = \frac{1 + \sqrt{1 + 4a}}{2}, \end{cases} \begin{cases} a > 0 \\ x = \frac{1 + \sqrt{1 + 4a}}{2}. \end{cases}$$

Таким образом, для исходного уравнения получаем:

при
$$a < -\frac{1}{4}$$
 корней нет;

при
$$a = -\frac{1}{4}$$
 и $a > 0$ существует единственный корень $x = \frac{1 + \sqrt{1 + 4a}}{2}$;

при $-\frac{1}{4} < a \le 0$ существует два корня:

$$x_1 = \frac{1 - \sqrt{1 + 4a}}{2}$$
 if $x_2 = \frac{1 + \sqrt{1 + 4a}}{2}$.

Пример 5. Решить уравнение

$$x + \sqrt{1 - x^2} = a$$

 \triangle Полагая $\sqrt{1-x^2}=y$, получим

$$\begin{cases} x+y=a \\ x^2+y^2=1 \\ y \geqslant 0. \end{cases}$$

что $x^2 + y^2 = (x + y)^2 - 2xy$, получим равносильную Замечая, систему

$$\begin{cases} x+y=a \\ a^2-2xy=1 \Rightarrow \begin{cases} x+y=a \\ xy=\frac{a^2-1}{2} \\ y \geqslant 0, \end{cases}$$

причем x и y уравнений системы являются корнями уравнения $t^2-at+\frac{a^2-1}{2}=0$ (по теореме Виета). Дискриминант этого уравнения $D = a^2 - 2(a^2 - 1) = -a^2 + 2$. Уравнение имеет корни, если $|a| \leq \sqrt{2}$, кроме того один из них должен быть неотрицателен, а другой любого знака.

Корни будут отрицательны, если $a^2-1>0$ и a<0, т. е. если $-\sqrt{2} \le a < -1$. При этом условии исходное уравнение не имеет корней. Если a=-1, то $t_1=0$, $t_2=-1$ и, значит, x=-1. Если -1 < a < 1, то $a^2 - 1 < 0$, корни разных знаков и, значит, х — отрицательный корень, т. е.

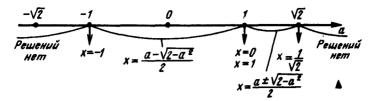
$$x = \frac{a - \sqrt{2 - a^2}}{2}.$$

Если a=1, то $t_1=0$, $t_2=1$ и уравнение имеет два корня: $x_1 = 0, x_2 = 1.$

Если $1 < a \le \sqrt{2}$, то $a^2 - 1 > 0$, a > 0 — оба корня уравнения положительны, и уравнение имеет два корня:

$$x_{1,2} = \frac{a \pm \sqrt{2 - a^2}}{2}.$$

Резюме



Пример 6. Решить уравнение
$$\sqrt{x^2-1}+\sqrt{x^2-2}=a$$
.

 \triangle Полагая $\sqrt{x^2-1}=u$, $\sqrt{x^2-2}=v$. получим

$$\begin{cases} u+v=a \\ u^2-v^2=1 \\ u \geqslant 0, \ v \geqslant 0 \end{cases}$$

Если a = 0, то система несовместима. Считая $a \neq 0$, находим $u-v=\frac{1}{a}$, $u=\frac{1}{2}(a+\frac{1}{a})$, $v=\frac{1}{2}(a-\frac{1}{a})$.

Решая систему неравенств

.
$$a + \frac{1}{a} \geqslant 0$$
, $a - \frac{1}{a} \geqslant 0$ находим $a \geqslant 1$. При этих значениях a $x^2 - 1 = u^2 = \frac{1}{4} \left(a + \frac{1}{a} \right)^2$, $x^2 = \frac{1}{4} \left(a + \frac{1}{a} \right)^2 \Rightarrow$ $\Rightarrow x = \pm \sqrt{1 + \frac{1}{4} \left(a + \frac{1}{a} \right)^2}$. \blacktriangle

Пример 7. Решить уравнение

$$x + \sqrt{x^2 - 1} = a$$
.
 \triangle Полагая $\sqrt{x^2 - 1} = y$, будем иметь
$$\begin{cases} x + y = a \\ x^2 - y^2 = 1, \end{cases} y \geqslant 0.$$

Если a=0, то эта система несовместна и, значит, при a=0 исходное уравнение не имеет корней.

Если $a \neq 0$, то $x - y = \frac{1}{x}$, x + y = a и, значит, $x = \frac{1}{x}$ $=\frac{1}{2}(a+\frac{1}{a}),\ y=\frac{1}{2}(a-\frac{1}{a}).$ Значение $x=\frac{1}{2}(a+\frac{1}{a})$ будет корнем данного уравнения тогда, и только тогда, когда у будет неотрицателен:

$$a - \frac{1}{a} \geqslant 0 \Rightarrow \frac{(a-1)(a+1)}{a} \geqslant 0 \Rightarrow a(a-1)(a+1) \geqslant 0 \Rightarrow$$

 $\Rightarrow -1 \leqslant a < 0$ или $a \geqslant 1$.

Для всех других значений а исходное уравнение не имеет корней. • Пример 8. Решить уравнение

$$\frac{1}{x} + \frac{1}{\sqrt{1 - x^2}} = a, \ a \neq 0.$$

 Δ Полагая $\sqrt{1-x^2}=y>0$, получим: $\frac{1}{x}+\frac{1}{y}=a$, $x^2+y^2=1$, y>0. Далее x+y=axy, $(x+y)^2-2xy=1$, $a^2(xy)^2-2xy-1=0$, $xy=\frac{1\pm\sqrt{1+a^2}}{a^2}$, $x+y=\frac{1\pm\sqrt{1+a^2}}{a}$.

Таким образом, x и y являются корнями уравнений (по теореме Виета):

$$z^{2} - \frac{1 + \sqrt{1 + a^{2}}}{a}z + \frac{1 + \sqrt{1 + a^{2}}}{a^{2}} = 0,$$
 (1)

$$z^{2} - \frac{1 - \sqrt{1 + a^{2}}}{a}z + \frac{1 + \sqrt{1 + a^{2}}}{a^{2}} = 0.$$
 (2)

Исследуем уравнение (1). Его дискриминант

$$D_{1} = \left(\frac{1+\sqrt{1+a^{2}}}{a}\right)^{2} - 4 \quad \frac{1+\sqrt{1+a^{2}}}{a^{2}} = \frac{1+\sqrt{1+a^{2}}}{a^{2}} \left(\sqrt{1+a^{2}} - 3\right).$$

Условие $D_1\geqslant 0$ будет выполнено, если $\sqrt{1+a^2}-3\geqslant 0$, т. е. если или $a\leqslant -2\sqrt{2}$ или $a\geqslant 2\sqrt{2}$. Если $a\leqslant -2\sqrt{2}$, то $x+y=\frac{1+\sqrt{1+a^2}}{a}<0$, $xy=\frac{1+\sqrt{1+a^2}}{a^2}>0$ и, значит, оба корня уравнения (1) отрицательны, т. е. оно не дает решений для исходного уравнения, поскольку y>0. Если $a\geqslant 2\sqrt{2}$, то x+y>0, xy>0, и оба корня уравнения (1) положительны, т. е. при условии $a\geqslant 2\sqrt{2}$ данное уравнение имеет корни

$$x_{1,2} = \frac{1 + \sqrt{1 + a^2}}{2a} \pm \frac{1}{2a} \sqrt{\frac{1 + \sqrt{1 + a^2}}{a^2} (\sqrt{1 + a^2} - 3)} =$$

$$= \frac{1}{2a} \left[1 + \sqrt{1 + a^2} \pm \sqrt{(1 + \sqrt{1 + a^2}) (\sqrt{1 + a^2} - 3)} \right].$$

Переходим к исследованию уравнения (2). Его дискриминант

$$D_2 = \left(\frac{1 - \sqrt{1 + a^2}}{a}\right)^2 - 4 \frac{1 - \sqrt{1 + a^2}}{a^2} = \frac{\sqrt{1 + a^2} - 1}{a^2} \left(3 + \sqrt{1 + a^2}\right) > 0,$$

так что уравнение (2) всегда имеет действительные корни.

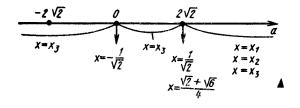
Так как
$$xy = \frac{1 - \sqrt{1 + a^2}}{a^2} < 0$$
,

то корни уравнения (2) противоположных знаков, а так как y>0, то x — отрицательный корень уравнения (2):

$$x_3 = \frac{1 - \sqrt{1 + a^3}}{2a} - \frac{1}{2a} \sqrt{(\sqrt{1 + a^2} - 1)(3 + \sqrt{1 + a^2})}.$$

Итак, при любом $a \neq 0$ исходное уравнение имеет корень x_3 ; если $a \geqslant 2\sqrt{2}$, то будут еще корни x_1 и x_2 ; если $a < -2\sqrt{2}$, то только один корень x_3 .

Расположение корней на числовой оси a показано на рисунке, по которому можно дать ответ о количестве корней в зависимости от a:



Пример 9. Найти такие значения a, b, c, при которых уравнение

$$\sqrt{x + a\sqrt{x} + b} + \sqrt{x} = c \tag{1}$$

имеет бесконечно много решений,

 \triangle Перенесем \sqrt{x} в правую часть и возведем обе части полученного уравнения в квадрат. После приведения подобных членов получим уравнение

$$(a+2c)\sqrt{x}=c^2-b,$$

являющееся следствием уравнения (1).

При a+2c=0 и $c^2-b=0$, и только в этом случае, последнее уравнение имеет бесконечно много решений (все неотрицательные числа).

Подставив a=2c и $b \doteq c^2$ в уравнение (1) получим

$$\sqrt{x - 2c\sqrt{x} + c^2} = c - \sqrt{x} \Rightarrow \sqrt{(\sqrt{x} - c)^2} = c - \sqrt{x} \Rightarrow |\sqrt{x} - c| = c - \sqrt{x}.$$
(2)

при c < 0 это уравнение корней не имеет, а при c = 0 имеет единственное решение $x_1 = 0$.

Пусть c>0. Рассмотрим такие значения неизвестного x которые удовлетворяют неравенству $0 \leqslant x \leqslant c^2$. Тогда $\sqrt{x} \leqslant c$, а поэтому $|\sqrt{x}-c|=c-\sqrt{x}$. Следовательно, уравнение (2) равносильно системе

$$\begin{cases} c > 0 \\ 0 \leq x \leq c^2. \end{cases}$$

Итак, уравнение (1) имеет бесконечно много решений тогда и только тогда, когда a=-2c, $b=c^2$ и c>0, и его решениями являются все числа из отрезка $[0;\ c^2]$.

Пример 10. Решить уравнение

$$\frac{\sqrt{a+x} + \sqrt{a-x}}{\sqrt{a+x} - \sqrt{a-x}} = \sqrt{b}.$$

 \triangle Уравнение определено, если $b \geqslant 0$, a+x>0, $a-x\geqslant 0$ $\sqrt{a+x}-\sqrt{a-x}\neq 0$. Из этих неравенств следует, что $a\geqslant 0$ и $-a< x\leqslant a$, т. к. $\sqrt{a+x}-\sqrt{a-x}\neq 0$, то $x\neq 0$, тогда a>0.

Так как числителем левой части является сумма арифметических корней, то $b \neq 0$. Запишем производную пропорцию из данного уравнения при $b \neq 1$:

$$\frac{(\sqrt{a+x}+\sqrt{a-x})+(\sqrt{a+x}-\sqrt{a-x})}{(\sqrt{a+x}+\sqrt{a-x})-(\sqrt{a+x}-\sqrt{a-x})} = \frac{\sqrt{b+1}}{\sqrt{b-1}} \Rightarrow$$

$$\Rightarrow \frac{\sqrt{a+x}}{\sqrt{a-x}} = \frac{\sqrt{b+1}}{\sqrt{b-1}}$$

После возведения обеих частей последнего уравнения в квадрат получим

$$\frac{a+x}{a-x} = \frac{\left(\sqrt{b}+1\right)^2}{\left(\sqrt{b}-1\right)^2}.$$

Составляем еще раз производную пропорцию

$$\frac{(a+x) - (a-x)}{(a+x) + (a-x)} = \frac{(\sqrt{b}+1)^2 - (\sqrt{b}-1)^2}{(\sqrt{b}+1)^2 + (\sqrt{b}-1)^2} \Rightarrow \frac{x}{a} = \frac{2\sqrt{b}}{b+1} \Rightarrow x = \frac{2a\sqrt{b}}{b+1}.$$

Поскольку $\frac{2\sqrt{b}}{b+1} \leqslant 1$, то $x \leqslant a$. При b=1 исходное уравнение принимает вид $\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=1$. Решая его находим x=a, что получается также из формулы

Итак,
$$x = \frac{2a\sqrt{b}}{b+1}$$
 при $b = 1$. $x = \frac{2a\sqrt{b}}{b+1}$ при $a > 0$ и $b > 0$. \blacktriangle

Пример 11. Решить уравнение $\sqrt{a - \sqrt{a + x}} = x$.

 \triangle Допустимыми значениями неизвестного x и параметра a по условию уравнения являются $a+x\geqslant 0,\ a\geqslant \sqrt{a+x},\ a$ с учетом арифметического корня в левой части уравнения $x\geqslant 0$. Возведем обе части уравнения в квадрат. После упрощений получаем $a-x^2=\sqrt{a+x}$. Прибавляя к обеим частям уравнения +x и раскладывая левую часть уравнения на множители как разность квадратов, получим

$$(x + \sqrt{a+x})(-x + \sqrt{a+x}) = \sqrt{a+x} + x$$
, или $(\sqrt{a+x} + x)(-x + \sqrt{a+x} - 1) \stackrel{\cdot}{=} 0$. (1)

Поскольку $x \ge 0$ и $\sqrt{a+x} \ge 0$, то $x + \sqrt{a+x} \ge 0$.

Если $x+\sqrt{a+x}=0$, то x=0 и $\sqrt{a+x}=0$, что возможно при a=0. Если $x+\sqrt{a+x}>0$, то уравнение (1) равносильно уравнению $\sqrt{a+x}=x+1$. После возведения обеих частей этого уравнения в квадрат и простейших преобразований получим

$$x^2 + x + 1 - a = 0$$
.

Если 1-a>0, то оба корня уравнения (2) отрицатеьны и решениями исходного уравнения быть не могут.

Если a=1, то $x_1=-1$ не может быть решением; $x_2=0$ —

решение исходного уравнения.

Если 1-a<0, то один корень уравнения (2) отрицателен, а другой положителен (о знаках корней квадратного уравнения см. с. 23). Найдем из уравнения (2) положительный корень:

$$x = \frac{-1 + \sqrt{-3 + 4a}}{2}$$
, если $a > 1$.

При a=1 из последней формулы находим x=0.

Ответ: При a=0 x=0; при $a \ge 0$ $x=\frac{-1+\sqrt{4a-3}}{2}$.

Пример 12. Решить уравнение

$$\sqrt{1+ax}-\sqrt{1-ax}=x$$
.

∆ Допустимые значения неизвестного и параметра в данном
 уравнении определяются системой неравенств.

$$\begin{cases} 1+ax\geqslant 0\\ 1-ax\geqslant 0, \end{cases}$$
 или $|ax|\leqslant 1.$

Кроме того, если a и x имеют одинаковые знаки (ax>0), то $\sqrt{1+ax}-\sqrt{1-ax}>0$ и решением уравнения может быть только положительное значение неизвестного, а это значит, что и a>0. Если a и x имеют разные знаки (ax<0), то $\sqrt{1+ax}-\sqrt{1-ax}<0$ и решением уравнения может быть только отрицательное значение неизвестного, но при этом также a>0. Таким образом, уравнение имеет отличное от нуля решение, если a>0. Если a=0, то x=0.

Перепишем уравнение в виде $\sqrt{1+ax}=x+\sqrt{1-ax}$ и возведем обе его части в квадрат.

После преобразований получим $x(x+2\sqrt{1-ax}-2a)=0$, откуда: а) $x_1=0$ при произвольных значениях a; б) $x+2\sqrt{1-ax}-2a=0$ или $2\sqrt{1-ax}=2a-x$.

Последнее уравнение имеет решения, если $2a-x\geqslant 0$. Возведем обе части этого уравнения в квадрат и после упрощений получим $x^2=4(1-a^2)$, откуда при $|a|\leqslant 1$ находим

$$x_2 = -2\sqrt{1-a^2}, \ x_3 = 2\sqrt{1-a^2}.$$

Найденные значения будут корнями исходного уравнения, если

$$\begin{cases} |ax| \leqslant 1 \\ 2a \geqslant x \\ a > 0 \\ |a| \leqslant 1 \end{cases} \quad \text{или} \begin{cases} 0 < a \leqslant 1 \\ \pm \sqrt{1 - a^2} \leqslant a \\ 1 \pm 2a\sqrt{1 - a^2}| \leqslant 1. \end{cases}$$

Отсюда получаем

$$\begin{cases} 0 < a \leqslant 1 \\ 1 - a^2 \leqslant a^2 \\ a^2 (1 - a^2) \leqslant \frac{1}{4} \end{cases}$$

Решая последнюю систему неравенств находим $\frac{\sqrt{2}}{2} \leqslant a \leqslant 1$.

Значит, $x_1 = 0$ при всех значениях a;

$$x_{2,3} = \pm 2\sqrt{1-a^2}$$
 при $\frac{\sqrt{2}}{2} \leqslant a \leqslant 1$. \blacktriangle

Пример 13. Решить уравнение

$$\frac{a+x}{\sqrt{a}+\sqrt{a+x}} = \frac{a-x}{\sqrt{a}-\sqrt{a+x}}.$$

 \triangle Очевидно, что $a \ge 0$. Пусть a = 0. Тогда данное уравнение представляет собой на множестве x > 0 тождество $\frac{x}{\sqrt{x}} = \frac{x}{\sqrt{x}}$,

т. е. множество корней уравнения есть

$$x \in [0; +\infty[$$
.

Пусть a>0. Выполним тождественные преобразования в области определения данного уравнения:

$$\frac{(a+x)(\sqrt{a}-\sqrt{a+x})-(a-x)(\sqrt{a}+\sqrt{a+x})}{a-a-x}=0, \ \frac{a\sqrt{a+x}-x\sqrt{a}}{x}=0.$$

Последнее уравнение равносильно системе

$$\begin{cases} a\sqrt{a+x} = x\sqrt{a} \\ x > 0 \\ a+x > 0, \end{cases}$$

Выразим переменную x через параметр a.

Обе части уравнения $\sqrt{a+x}=x\sqrt{a}$ имеют одинаковые знаки, поэтому при возведении их в квадрат равносильность не нарушится и уравнение системы принимает вид

$$a^{2}(a+x)=x^{2}a$$
, T. e. $x^{2}-ax-a^{2}=0$.

Последнее уравнение имеет корни $x_1 = a(1+\sqrt{5})/2$, $x^2 = a(1-\sqrt{5})/2$. Остальным условиям системы удовлетворяет лишь первый из них. Итак, если a=0 то $x\in]0; +\infty[$; если a>0, то $x=a(1+\sqrt{5})/2$.

Пример 14. Решить уравнение

$$\sqrt{a+x} - \sqrt{\frac{a^2}{a+x}} = \sqrt{2a+x}.$$

△ Выполняя тождественные преобразования в области определения уравнения, получаем

$$a+x-|a| = \sqrt{2a+x} \cdot \sqrt{a+x}$$
 (*)

Рассмотрим решение этого уравнения в зависимости от значений параметра a.

Пусть a=0. Тогда уравнение (*) примет вид $x=\sqrt{x}\cdot\sqrt{x}$, что является тождеством на x>0.

Пусть, далее, a > 0. Перепишем данное уравнение в виде

$$\frac{a}{\sqrt{a+x}} = \sqrt{a+x} - \sqrt{2a+x} \,.$$

ОДЗ этого уравнения характеризуется системой неравенств

$$\begin{cases} a+x>0\\ 2a+x\geqslant 0\\ a+x>2a+x. \end{cases}$$

Откуда a > 2a. Но это неверно ни при каких a > 0. Следовательно, при a > 0 множество корней данного уравнения пустое.

К этому же выводу можно было прийти иначе. При a>0 уравнение (*) перепишется в виде $x=\sqrt{2a+x}\cdot\sqrt{a+x}$, откуда следует, что x>0. После возведения в квадрат обеих частей уравнения получим корень x=-2a/3. Но при a>0-2a/3<0, значит x=-2a/3 не является корнем уравнения (*).

Пусть, наконец, a < 0. В этом случае уравнение (*) принимает вид $2a + x = \sqrt{2a + x} \cdot \sqrt{a + x}$

Решая последнее уравнение, получим

$$(2a+x)^2 = (2a+x)(a+x) \Rightarrow (2a+x)(2a+x-a-x) = 0;$$

 $(2a+x)a = 0, x = -2a.$

Итак, если a=0, то $x \in [0; +\infty[$; если a < 0, то x = -2a.

Пример 15. Решить неравенство

$$\sqrt{a+x}+\sqrt{a-x}>a$$
.

△ Левая часть неравенства имеет смысл тогда и только тогда, когда х и а удовлетворяют следующей системе неравенств:

$$\begin{cases} a+x \geqslant 0 \\ a-x \geqslant 0. \end{cases}$$

При a < 0 эта система, очевидно, не имеет решений. Если a = 0, то система имеет единственное решение x=0. Но при a=0 значение переменной x=0 не удовлетворяет неравенству. Если a>0, то решениями системы будут все значения $x\in [-a; a]$ При условиях a > 0 и $|x| \le a$ исходное неравенство можно, не нарушая равносильности, почленно возвести в квадрат и получить

$$2a + 2\sqrt{a^2 - x^2} > a^2 \Rightarrow 2\sqrt{a^2 - x^2} > a^2 - 2a.$$

Теперь придется рассмотреть три случая:

1) Если $a^2 - 2a < 0$, т. е. 0 < a < 2, то, так как левая часть неравенства при $|x| \le a$ неотрицательна, а правая — отрицательна, неравенство справедливо при всех $x \le |a|$. 2) Если $a^2 - 2a = 0$, т. е. a = 2, то неравенство имеет вид

 $2\sqrt{4-x^2} > 0$ и удовлетворяется при |x| < 2.

3) Если $a^2 - 2a > 0$, т. е. a > 2, то, возведя обе части неравенства в квадрат, приходим к равносильному и $4(a^2-x^2)>a^4-4a^3+4a^2$, упрощая которое, получаем неравенству

$$-4x^2 > a^3(a-4) \Rightarrow x^2 < \frac{a^3(4-a)}{4}$$
..

Теперь видно, что при $a \ge 4$ решений нет. В случае, когда 2 < a < 4, решениями последнего неравенства будут все значения х, для которых

$$|x| < \frac{a\sqrt{a(4-a)}}{2}.$$

Будут ли все эти значения х давать решение исходного неравенства? Это зависит от того будут ли значения выражения $\frac{a\sqrt{a(4-a)}}{2}$ при $a\in (2;4)$ превосходить a или не будут. Напомним, что мы рассматриваем лишь те значения переменной x, для которых $|x| \le a$. Докажем, что они не будут превосходить a, т. е. что

$$\frac{a\sqrt{a\left(4-a\right)}}{2}\leqslant a$$
 или $\frac{\sqrt{a\left(4-a\right)}}{2}\leqslant 1.$

Возводя в квадрат обе части неравенства, получаем

$$\frac{a(4-a)}{4} \leqslant 1 \Rightarrow 4a - a^2 \leqslant 4 \Rightarrow a^2 - 4a + 4 \geqslant 0.$$

и, следовательно, приходим к верному неравенству $(a-2)^2 \geqslant 0$. Ответ: Если $a \leqslant 0$, то решений нет;

если 0 < a < 2, то $x \in [-a; a]$ если a = 2, то $x \in (-2; 2)$. Если 2 < a < 4, то $x \in \left(\frac{-a\sqrt{a(4-a)}}{2}; \frac{a\sqrt{a(4-a)}}{2}\right)$; если $a \geqslant 4$,

то решений нет. 🔺

Пример 16. Для всех $a \ge 0$ решить неравенство $\sqrt{a^2 - x^2} > x + 1$.

 \triangle При $a \geqslant 0$ неравенство (1) равносильно совокупности двух систем:

$$\begin{cases} x+1 \geqslant 0 \\ a^2 - x^2 > (x+1)^2, \end{cases} \begin{cases} -a \leqslant x \leqslant a \\ x+1 < 0. \end{cases}$$

Для второй системы возможны два случая расположения множеств x на числовой оси:

1)
$$-a$$
 + a -1 Но т. к. $a \geqslant 0$, то первое располо-

жение невозможно

нием системы будет «заштрихованное» множество -a < x < -1. При $a \in [0; 1]$ вторая система решений не имеет.

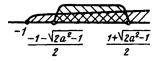
Первая система совокупности равносильна системе

$$\begin{cases} x \ge -1 \\ 2x^2 + 2x + 1 - a^2 < 0. \end{cases}$$
 (2)

Решим неравенство $2x^2+2x+1-a^2<0$. Дискриминант квадратного трехчлена $2x^2+2x+1-a^2$ равен $8a^2-4$, при $a\geqslant 0$ он положителен только при $1/\sqrt{2} < a$. Следовательно, система (2) равносильна системе

$$\begin{bmatrix} x \geqslant -1 \\ 1/\sqrt{2} < a \\ \frac{-1-\sqrt{2a^2-1}}{2} < x < \frac{-1+\sqrt{2a^2-1}}{2}, \end{bmatrix}$$

которая дает также два расположения множеств x на числовой оси:



Это возможно, когда— $1 \leqslant \frac{-1 - \sqrt{2a^2 - 1}}{2}$. Найдем при каких a это возможно, решив неравенство

$$\sqrt{2a^2-1} \leqslant 1 \Rightarrow 2a^2-1 \leqslant 1 \Rightarrow 2a^2 \leqslant 2, -1 \leqslant a \leqslant 1$$

с учетом $a > \frac{\sqrt{2}}{2}$, получим $\frac{\sqrt{2}}{2} < a \leqslant 1$.

$$\frac{1 - \sqrt{2\alpha^2 1}}{2} - \frac{1 - \sqrt{2\alpha^2 - 1}}{2}$$

Это возможно, если $\frac{-1-\sqrt{2a^2-1}}{2} < -1$, $a-1 \leqslant \frac{-1+\sqrt{2a^2-1}}{2}$.

Первое неравенство справедливо при |a|>1, второе при $a>> \frac{\sqrt{2}}{2}$, совместно — при a>1. Значит, при a>1 решение:

$$1 \leqslant x < \frac{-1 + \sqrt{2a^2 - 1}}{2}.$$

Объединяя эти решения с полученными выше, получим ответ к неравенству (1):

при
$$a \in \left[0; \frac{\sqrt{2}}{2}\right]$$
 — решений нет; при $a \in \left(\frac{\sqrt{2}}{2}; 1\right) \ x \in \left(\frac{-1 - \sqrt{2a^2 - 1}}{2}; \frac{-1 + \sqrt{2a^2 - 1}}{2}\right);$ при $a > 1 \ x \in \left[-1; \frac{-1 + \sqrt{2a^2 - 1}}{2}\right).$ \blacktriangle

Неравенство (1) допускает простую геометрическую интерпрегацию. Построим графики функций f(x)=x+1 и $g(x, a)=\sqrt{a^2-x^2}$ (рис. 25).

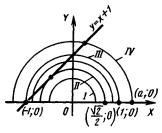


Рис. 25

Графиком функции g(x, a) является верхняя полуокружность радиуса a с центром в начале координат, т. е. множество точек (x, y), координаты которых удовлетворяют следующей системе

$$\begin{cases} y > 0 \\ x^2 + y^2 = a^2. \end{cases}$$

В зависимости от значений числа a эта полуокружность может занимать следующие положения (см. рис. 25) относительно графика функции f(x) = x + 1:

- 1. График функции g(x, a) (положение I) расположен ниже прямой y = x + 1, что соответствует значениям $a \in \begin{bmatrix} 0; & -\frac{\sqrt{2}}{2} \end{bmatrix}$.
- 2. График функции g(x, a) (положение II) касается прямой y=x+1, что соответствует значению $a=\frac{\sqrt{2}}{2}$.
- 3. График функции g(x, a) (положение III) пересекает прямую y = x + 1 в двух точках, что соответствует значению

$$a \in \left(\frac{\sqrt{2}}{2}; 1\right)$$
.

4. График функции g(x, a) (положение IV) пересекает прямую y=x+1 в одной точке, что соответствует значению a>1

Пример 17. Для всех а решить неравенство

$$\sqrt{\frac{3x+a}{x-a}} < a-1. \tag{1}$$

 \triangle Левая часть неравенства (1) неотрицательна на ОДЗ, поэтому a-1>0, т. е. a>1. Найдем ОДЗ данного неравенства: $\frac{3x+a}{x-2} \geqslant 0$, откуда получаем два промежутка $-\infty < x \leqslant -\frac{a}{3}$;

$$a < x < \infty$$
.

Возведя обе части неравенства (1) в квадрат, получим

$$\frac{3x+a}{x-a} < (a-1)^2 \Rightarrow \frac{x(2+2a-a^2) + a(a^2-2a+2)}{x-a} < 0.$$

Это неравенство с учетом ОДЗ и условия a>1 равносильно совокупности двух систем:

$$\begin{cases} a > 1 \\ x \le -\frac{a}{3} \\ x(2+2a-a^2) + a(a^2-2a+2) > 0 \Rightarrow \\ \begin{cases} a > 1 \\ x > a \\ x(2+2a-a^2) + a(a^2-2a+2) < 0 \end{cases}$$

$$\Rightarrow \begin{cases} a > 1 \\ x \leqslant -\frac{a}{3} \\ x(a^{2} - 2a - 2) < a(a^{2} - 2a + 2). \end{cases}$$

$$\begin{cases} a > 1 \\ x > a \\ x(a^{2} - 2a - 2) > a(a^{2} - 2a + 2). \end{cases}$$
(3)

Поскольку $a^2-2a-2=\left(a-\left(1+\sqrt{3}\right)\right)\left(a-\left(1-\sqrt{3}\right)\right)$, то $a^2-2a-2<0$ при $1-\sqrt{3}< a<1+\sqrt{3};\ a^2-2a-2=0$ при $a_1=1+\sqrt{3},\ a_2=1-\sqrt{3}$ и $a^2-2a-2>0$ при $a>1+\sqrt{3},\ a<1-\sqrt{3}.$

При $a=1+\sqrt{3}$ система (3) решений не имеет, а системе (2) удовлетворяют все x из промежутка $-\infty < x \leqslant \frac{-1-\sqrt{3}}{3}$.

При $1 < a < 1 + \sqrt{3}$ совокупность систем (2) и (3) равносильна соответственно совокупности систем

$$\begin{cases} 1 < a < 1 + \sqrt{3} \\ x \leqslant -\frac{a}{3} \\ x > \frac{a(a^2 - 2a + 2)}{a^2 - 2a - 2} \end{cases}$$
 (4)
$$\begin{cases} 1 < a < 1 + \sqrt{3} \\ x > a \\ x < \frac{a(a^2 - 2a + 2)}{a^2 - 2a - 2} \end{cases}$$
 (5)

и справедливы неравенства

$$\frac{a(a^2-2a+2)}{a^2-2a-2} < \frac{-a}{3}$$
 M: $\frac{a(a^2-2a+2)}{a^2-2a-2} < a$,

поэтому решениями системы (4) являются все x из промежутка $\frac{a(a^2-2a+2)}{a^2-2a-2} < x \leqslant \frac{-a}{3}$, а система (5) решений не имеет.

При $a < 1 + \sqrt{3}$ совокупность систем (2) и (3) равносильна соответственно совокупности систем

$$\begin{cases} a > 1 + \sqrt{3} \\ x \le -\frac{a}{3} \\ x < \frac{a(a^2 - 2a + 2)}{a^2 - 2a - 2} \end{cases}$$
 (6)
$$\begin{cases} a > 1 + \sqrt{3} \\ x > a \\ x > \frac{a(a^2 - 2a + 2)}{a^2 - 2a - 2} \end{cases}$$
 (7)

и справедливы неравенства $\frac{a(a^2-2a+2)}{a^2-2a-2}>\frac{-a}{3}$ и $\frac{a(a^2-2a+2)}{a^2-2a-2}>a$; поэтому решениями системы (6) являются все x из промежутка $-\infty < x \leqslant -\frac{a}{3}$, а решениями системы (7) — все x из промежутка

$$\frac{a(a^2-2a+2)}{a^2-2a-2} < x < +\infty.$$

Таким образом, для исходного неравенства (1) имеем:

$$\frac{a(a^2-2a+2)}{a^2-2a-2} < x \leqslant \frac{-a}{3} \text{ при } 1 < a < 1+\sqrt{3}; \ -\infty < x \leqslant \frac{-1-\sqrt{3}}{3}$$
 при $a=1+\sqrt{3}; \ -\infty < x \leqslant \frac{-a}{3}$ и $\frac{a(a^2-2a+2)}{a^2-2a-2} < x < +\infty$

при $a = 1 + \sqrt{3}$; $-\infty < x \le \frac{1}{3}$ и $\frac{1}{a^2 - 2a - 2} < x < + \sqrt{3}$ при $a > 1 + \sqrt{3}$; при $a \le 1$ решений нет. \blacktriangle

Упражнения

1. Решить уравнения:

1)
$$\frac{\sqrt{x+2a}-\sqrt{x-2a}}{\sqrt{x+2a}+\sqrt{x-2a}} = \frac{x}{2a}$$
; 2) $x\sqrt{\frac{a-x}{x}}-\sqrt{x^2-a^2} = 0$;

3)
$$\sqrt{5a+x} + \sqrt{5a-x} = \frac{12a}{\sqrt{5a+x}}$$
; 4) $\frac{\sqrt{a+x} + \sqrt{a-x}}{\sqrt{a+x} - \sqrt{a-x}} = \sqrt{2}$;

5)
$$\frac{(x+a)\sqrt{x+b} + (x+b)\sqrt{x+a}}{\sqrt{x+b} + \sqrt{x+a}} = \sqrt{ab}$$
; 6) $\frac{a\sqrt{x} + b}{a - b\sqrt{x}} = \frac{a+b}{a-b}$;

7)
$$x^2 + \sqrt{a + x} = a$$
.

Ответы: 1) Указание: используя свойство пропорции $\frac{a}{b}$ =

$$=\frac{c}{d}\Rightarrow \frac{a-b}{a+b}\stackrel{\prime}{=}\frac{c-d}{d+c}$$
 заменить уравнением $\frac{-\sqrt{x-2a}}{\sqrt{x+2a}}=\frac{x-2a}{x+2a}.$ При $a\neq 0$ $\{2|a|\}.$

- 2) При $a \neq 0$ x = a.
- 3) При a > 0 {3a; 4a}.
- 4) При $a > 0 \left\{ \frac{2\sqrt{2a}}{3} \right\}$.

Воспользоваться указанием примера 1.

- 5) При a=0, b<0 $\{-b\}$; при b=0, a<0 $\{-a\}$; при a=0, b>0 $\{0\}$; при b=0, a>0 $\{0\}$; при a>0, b>0 $\{0\}$; при a<0, b<0 $\{-(a+b)\}$.
 - 6) При $a \neq b$ {1}.
 - 7) При $a \le 0$ решений нет; при $0 < a \le \frac{3}{4} x_{1,2} = \frac{1 \pm \sqrt{1+4a}}{2}$;

при
$$a < \frac{3}{4} x_{1,2} = \frac{1 \pm \sqrt{1+4a}}{2}$$
, $x_{3,4} = \frac{-1 \pm \sqrt{4a-3}}{2}$.

2. Решить уравнения:

1)
$$\sqrt{x+a} + \sqrt{x-a} = \sqrt{2x}$$
; 2) $\sqrt{a+x} = a - \sqrt{x}$;

3)
$$x + \frac{x}{\sqrt{x^2 - a}} = a$$
; 4) $\sqrt{1 - x^2} = (a - \sqrt{x})^2$;

5)
$$\frac{\sqrt{1+a^{-2}x^2}-xa^{-1}}{\sqrt{1+a^{-2}x^2}+xa^{-1}} = \frac{1}{4}.$$

Ответы: 1) При $a \le 0$ x = -a; при $a \ge 0$ x = a.

- 2) При $a \geqslant 1$ $x = \frac{1}{4}(a-1)^2$; при a = 0 x = 0; при a < 1 и $a \neq 0$ нет решений.
- 3) При $|a|\geqslant 2\sqrt{2}\ x=rac{a\pm\sqrt{a^2+4}-\sqrt{1+a^2}}{2}$; при $|a|<2\sqrt{2}$ нет корней.
 - 4) При a < -1 и $a > \sqrt[4]{8}$ нет корней; при a = -1 x = 0;

при
$$a=1$$
 {0; 1}; при $|a|<1$ $x=\left[\frac{a}{2}+\sqrt{\sqrt{\frac{a^4+1}{2}-\frac{3a^2}{4}}}\right]^2;$ при $1< a<\sqrt[4]{8}$ $x=\left[\frac{a}{2}\pm\sqrt{\sqrt{\frac{a^4+1}{2}-\frac{3a^2}{4}}}\right].$

- 5) $x = \frac{3}{4} a$ при $a \neq 0$.
- 3. При каких a уравнение $\sqrt{x(1-x)} = a x$ имеет одно или неколько решений.

Ответ: при $0 \leqslant a < 1$ и при $a = \frac{1}{2} + \frac{1}{\sqrt{2}}$ — одно решение; при $1 \leqslant a < \frac{1}{2} + \frac{1}{\sqrt{2}}$ — два решения; при всех других a — решений нет.

- 4. При всех a решить неравенство:
- 1) $a\sqrt{x+1} < 1$; 2) $4-x^2 > \sqrt{a^2-x^2}$;

3)
$$x + \sqrt{4 - x^2} < a;$$
 4) $\sqrt{a + \sqrt{x}} + \sqrt{a - \sqrt{x}} \le \sqrt{2};$

- 5) $(a+1)\sqrt{2-x} < 1$; 6) $\sqrt{1-x^2} < x+a$;
- 7) $x + \sqrt{x^2 x} < a;$ 8) $\sqrt{x + a} > x + 1;$
- 9) $x + \sqrt{a x} > 0$, $a \ge 0$; 10) $2x + \sqrt{a^2 x^2} > 0$.

Ответы: 1) при $a \leqslant 0 - 1 \leqslant x < +\infty$; при $a > 0 - 1 \leqslant x < -1 + + \frac{1}{a^2}$;

2) при
$$a=0$$
 $x=0$; $|x| \le a$ при $0 < |a| < \frac{\sqrt{15}}{2}$;

$$-a \leqslant x < -\sqrt{\frac{7 - \sqrt{4a^2 - 15}}{2}}, -\sqrt{\frac{7 + \sqrt{4a^2 - 15}}{2}} < x < < \sqrt{\frac{7 - \sqrt{4a^2 - 15}}{2}}, \sqrt{\frac{7 - \sqrt{4a^2 - 15}}{2}} < x \leqslant a$$
 при $\frac{\sqrt{15}}{2} \leqslant |a| < 2;$

$$-\sqrt{rac{7+\sqrt{4a^2-15}}{2}} < x < \sqrt{rac{7-\sqrt{4a^2-15}}{2}}$$
 при $2 \leqslant |a| < 4;$

 $^{\text{При}} |a| \geqslant 4$ решений нет;

3) при
$$a\leqslant -2$$
 решений нет; при $-2< a\leqslant 2$ $-2\leqslant x<$ $<\frac{a-\sqrt{8-a^2}}{2}$; при $2< a\leqslant 2\sqrt{2}$ $-2\leqslant x<\frac{a-\sqrt{8-a^2}}{2}$ и $\frac{a+\sqrt{8-a^2}}{2}< x\leqslant 2$; при $a>2\sqrt{2}$ $-2\leqslant x\leqslant 2$;

4) решений нет при a < 0 и a > 1; x = 0 при a = 0; $0 \le x \le a^2$ при $0 < a \le \frac{1}{2}$; $2a - 1 \le x \le a^2$ при $\frac{1}{2} < a < 1$; x = 1 при a = -1;

5)
$$-\infty < x \le 2$$
 при $a \le -1$; $2 - \frac{1}{(1+a)^2} < x \le 2$ при $a > -1$;

6) решений нет при
$$a\leqslant -1$$
; $\frac{-a+\sqrt{2-a^2}}{2} < x\leqslant 1$ при $1< a\leqslant 1$; $-1\leqslant x<\frac{-a-\sqrt{2-a^2}}{2}$ и $\frac{-a+\sqrt{2-a^2}}{2} < x\leqslant 1$ при $1< a\leqslant \sqrt{2}$; $-1\leqslant x\leqslant 1$ при $a>\sqrt{2}$;

7) решений нет при $a \leqslant 0$; $\frac{a^2}{2a-1} < x \leqslant 0$ при $0 < a < \frac{1}{2}$; $-\infty < x \leqslant 0$ при $\frac{1}{2} \leqslant a \leqslant 1$; $-\infty < x < 0$ и $1 \leqslant x < \frac{a^2}{2a-1}$ при a > 1;

8) решений нет при $a \le 0$; $1 - 2\sqrt{a} < x < 1 + 2\sqrt{a}$ при $0 < a \le 1$; $-a \le x < 1 + 2\sqrt{a}$ при a > 1.

9) Если
$$a=0$$
, то $-1 < x < 0$, при $a > 0$ $x \in \left[\frac{-1-\sqrt{1+4a}}{2}; a\right]$.

10) при
$$a=0$$
 решений нет; $a \neq 0$ $-\frac{|a|}{\sqrt{5}} < x \le |a|$.

5. Пусть a > 0, b > 0. Найти решения неравенств:

1)
$$\sqrt{\frac{1}{x^2} - \frac{1}{a^2}} > \frac{1}{x} - \frac{1}{b}$$
; 2) $\sqrt{\frac{1}{x^2} - \frac{1}{a^2}} > \frac{1}{x} + \frac{1}{b}$.

Ответы: 1) $(-a; 0) \cup \left(0; \frac{2a^2b}{a^2+b^2}\right)$ при $a \le b; [-a; 0) \cup (0; a]$ при a > b;

2)
$$[-a; 0)$$
 при $a < b; \left(\frac{-2a^2b}{a^2+b^2}; 0\right)$ при $a \ge b$.

6. РЕШЕНИЕ ПОКАЗАТЕЛЬНЫХ И ЛОГАРИФМИЧЕСКИА УРАВНЕНИЙ И НЕРАВЕНСТВ

Примеры с решениями

Пример 1. Найти все значения a, при которых уравнение $4^x - a2^x - a + 3 = 0$ имеет хотя бы одно решение.

 \triangle Пусть $2^x = t > 0$, тогда исходное уравнение примет вид $t^2 - at - a + 3 = 0$, и для того чтобы оно имело хотя бы одно решение, необходимо и достаточно, чтобы квадратный трехчлен $t^2 - at - a + 3$ имел хотя бы один положительный корень, при этом дискриминант трехчлена должен быть неотрицательным, т. е. $D = a^2 - 4(3-a) = a^2 + 4a - 12 = (a-2)(a+6) \geqslant 0 \Rightarrow a \leqslant -6$ или $a \geqslant 2$.

Корни t_1 и t_2 квадратного уравнения $t^2-at-a+3=0$ удовлетворяют системе уравнений (по теореме Виета)

$$\begin{cases} t_1 t_2 = 3 - a \\ t_1 + t_2 = a. \end{cases}$$

При $a \le -6$ имеем $t_1t_2 > 0$, $t_1 + t_2 < 0$, поэтому оба корня t_1 и t_2 отрицательны и, следовательно, исходное уравнение решений не имеет.

При $2 \le a \le 3$ имеем $t_1 + t_2 > 0$, $t_1 t_2 > 0$, а это означает, что оба корня положительны и удовлетворяют условию исходного уравнения.

При a=3 один корень нулевой, а другой положительный.

При $3 < a < +\infty$ $t_1 t_2 < 0$, корни t_1 и t_2 разного знака.

Итак при $a\geqslant 2$ исходное уравнение имеет хотя бы одно решение. \blacktriangle

Пример 2. При каждом a решить уравнение

$$4^{x}-2a(a+1)2^{x-1}+a^{3}=0.$$

 \triangle Пусть $2^x = t > 0$, тогда $t^2 - a(a+1)t + a^3 = 0$. (*) Определим a, при которых это уравнение имеет решение.

$$D = a^{2}(a+1)^{2} - 4a^{3} \geqslant 0 \Rightarrow (a+1)^{2} - 4a \geqslant 0$$
,

т. к. по исходному уравнению видно, что $a \neq 0$. Далее

$$a^2 + 2a + 1 - 4a \geqslant 0 \Rightarrow (a - 1)^2 \geqslant 0 \Rightarrow a \in \mathbb{R}$$

с учетом, что $a \neq 0$ $a \in \mathbb{R} \setminus \{0\}$.

Корни уравнения (*) могут быть только положительными. Рассмотрим два случая.

1. Оба корня положительны:

$$\begin{cases} D > 0 \\ t_1 + t = a(a+1) > 0 \Rightarrow \begin{cases} a \in \mathbb{R} \setminus \{0; 1\} \\ a < -1 \text{ или } a > 0 \Rightarrow 0 < a < 1 \text{ или } a > 0 \end{cases}$$
 или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 < a < 1$ или $a > 0 \Rightarrow 0 <$

Найдем корни уравнения (*)

$$t_{1,2} = \frac{a(a+1) \pm \sqrt{a^2(a-1)^2}}{2}; \ t_1 = \frac{a(a+1) - |a| |a-1|}{2};$$

$$t_2 = \frac{a(a+1) + |a| |a-1|}{2}$$
.

Раскрывая модули при $a \in]0; 1 \mid \bigcup]1; +\infty[$ находим, что $t_1 = a$ и $t_2 = a^2$ или $2^x = a \ x = \log_2 a; \ 2^x = a^2; \ x = \log_2 a^2$

Если D=0, т. е. при a=0 и a=1 находим, что при a=0 уравнение не имеет решений, а при a=1 t=1 $2^x=1$ x=0.

2. Корни разных знаков

$$\begin{cases} D > 0 \\ t_1; t_2 = a^3 < 0 \end{cases} \quad \begin{cases} a \in \mathbb{R} \setminus \{0; 1\} \\ a < 0 \end{cases} \Rightarrow a < 0.$$

Раскрывая модули t_1 и t_2 при a<0, получим $t_1=a$, $t_2=a^2$, $t_1<0$, поэтому не может быть корнем уравнение (*). При $t_2=a^2$ $2^x=a^2$ $x=\log_2 a^2$

Ответ: при a < 0 $x = \log_2 a^2$; при a = 0 решений нет; при a > 0 $x = \log_2 a$ и $x = \log_2 a^2$. \blacktriangle

Пример 3. Найти все значения параметра p, при которых уравнение

$$(10-p)5^{2x+1}-2\cdot 5^{x+1}+6-p=0$$

не имеет решений.

 \triangle Пусть $5^x = t > 0$, тогда исходное уравнение перепишется в таком виде $5(10-p)t^2-10t+6-p=0$. (*) Уравнение (*) не имеет решений, если D < 0. Кроме того, неположительные корни уравнения (*) не могут быть корнями исходного уравнения.

Найдем при каких $p\ D<0$. $D=25-5(6-p)(10-p)<0\Rightarrow p^2-16p+55>0\Rightarrow p<5$ или p>11. Итак, при $p\in]-\infty;\ 5[\cup]11;+\infty[$ уравнение (*), а значит и исходное, решений не имеет.

Найдем при каких *р* оба корня уравнения (*) неположительны. Это возможно, когда:

$$\begin{cases} D \geqslant 0 \\ t_1 + t_2 \leqslant 0 \Rightarrow \begin{cases} \frac{5 \leqslant p \leqslant 11}{5} \leqslant 0 \\ \frac{6 - p}{5(10 - p)} \geqslant 0 \end{cases} \Rightarrow \begin{cases} 5 \leqslant p \leqslant 11 \\ p > 10 \\ p \leqslant 6 \text{ или } p > 10 \end{cases}$$

Ответ: $p \in]-\infty; 5[\bigcup]10; +\infty[.$

Пример 4. Найти все значения параметра p, при которых уравнение

$$(p-1)4^x-4\cdot6^x+(p+2)9^x=0$$

имеет хотя бы одно решение.

 \triangle Разделив все члены уравнения на 6^x , получим $(p-1)\left(\frac{2}{3}\right)^x-4+(p+2)\left(\frac{3}{2}\right)^x=0$. Нусть $\left(\frac{2}{3}\right)^x=t>0$, тогда $(p-1)t-4+\frac{p+2}{t}=0\Rightarrow (p-1)t^2-4t+p+2=0\Rightarrow$

$$\Rightarrow t^2 - \frac{4}{p-1}t + \frac{p+2}{p-1} = 0. \tag{*}$$

Исходное уравнение может иметь только положительные корни. Уравнение (*) имеет положительные корни, если:

$$\begin{cases} D \geqslant 0 \\ t_1 - t_2 = \frac{4}{p-1} > 0 \\ t_1 t_2 = \frac{p+2}{p-1} > 0 \end{cases} \Rightarrow \begin{cases} D = 4 - (p-1)(p+2) \geqslant 0 \\ p > 1 \\ p < -2 \text{ или } p > 1 \end{cases} \Rightarrow \begin{cases} 3 \leqslant p \leqslant 2 \\ p > 1 \end{cases} \Rightarrow 1$$

Корни уравнения (*) разного знака, если:

$$\begin{cases} D > 0 \\ t_1 t_2 = \frac{p+2}{p-1} < 0 \Rightarrow \begin{cases} -3 \le p < 2 \\ -2 < p < 1 \end{cases} -2 < p < 1.$$

С учетом того, что при p=1 и p=2 исходное уравнение имеет один положительный корень, записываем ответ -2 .

Пример 5. При каждом a указать, для каких x выполняется неравенство $a^2 - 9^{x+1} - 8 \cdot 3^x a < 0$.

 \triangle Если a=0, то исходное неравенство имеет вид $-9^{x+1}>0$ и не выполняется ни при каких x.

Пусть a — некоторое фиксированное число, отличное от нуля. Обозначив 3^x через t, исходное неравенство можно переписать так: $9t^2 + 8at - a^2 < 0$ (*). Найдем корни трехчлена

$$t_{1,2} = \frac{-4a \pm \sqrt{16a^2 + 9a^2}}{9}$$
; $t_1 = \frac{-4a - 5|a|}{9}$, $t_2 = \frac{-4a + 5|a|}{9}$.

Видно, что при всех $a \neq 0$ $t_1 < t_2$ и решениями неравенства (*) будут $t \in]t_1; t_2[$, т. е. $t_1 < t < t_2$ или при a > 0

$$\frac{-4a-5a}{9} < 3^x < \frac{-4a+5a}{9} \Rightarrow -a < 3^x < \frac{1}{9} a \Rightarrow x < \log_3 a - 2.$$
При $a < 0 \frac{-4a+5a}{9} < 3^x < \frac{-4a-5a}{9} \Rightarrow \frac{a}{9} < 3^x < -a \Rightarrow$

$$\Rightarrow 3^x < -a \Rightarrow x < \log_3 (-a).$$

Ответ: При a < 0 $x < \log_3(-a)$; при a = 0 решений нет; при a > 0 $x < \log_3 a - 2$. \blacktriangle

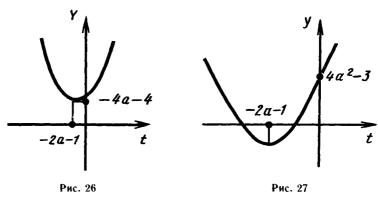
Пример 6. Найти все значения a, при которых неравенство $4^{x^2} + 2(2a+1)2^{x^2} + 4a^2 - 3 > 0$

выполняется для любых x.

 \triangle Пусть $2^{x^2} = t > 0$, тогда исходное неравенсьво перепишется в виде

$$t^2 + 2(2a+1)t + 4a^2 - 3 > 0. (1)$$

При каждом a квадратному трехчлену $t^2+2(2a+1)t+4a^2-3$ на плоскости toY соответствует парабола, ветви которой направлены вверх, осью симметрии служит прямая t=-2a-1, а вершиной является точка (-2a-1; -4a-4). Если -4a-4>0 т. е. a>-1, то вершина параболы, а следовательно, и вся парабола, расположены в верхней полуплоскости (рис. 26). Это означает, что трехчлен положителен при любом t, в том числе и при t>0.



Второе расположение параболы (рис. 27), отвечающее требованию задачи. определяется следующими условиями:

$$\begin{cases} D \geqslant 0 & D = (2a+1)^2 - 4a^2 + 3 \geqslant 0 \\ -2a - 1 < 0 \Rightarrow a > -\frac{1}{2} & \Rightarrow \\ f(0) > 0 & 4a^2 - 3 > 0 \end{cases}$$

$$\Rightarrow \begin{cases} a \geqslant -1 \\ a > -\frac{1}{2} \\ a < -\frac{\sqrt{3}}{2} \text{ или } \frac{\sqrt{3}}{2} < a. \end{cases}$$

Other: $a \in [-\infty; -1) \cup \left(\frac{\sqrt{3}}{2}; +\infty\right)$.

Пример 7. При каждом значении a решить уравнение $\left(1 + (a+2)^2\right) \log_3\left(2x - x^2\right) + \left(1 + (3a-1)^2\right) \log_{11}\left(1 - \frac{x^2}{2}\right) = \log_3\left(2x - x^2\right) + \log_{11}\left(1 - \frac{x^2}{2}\right).$

△ Найдем ОДЗ исходного уравнения, не зависящее от а:

$$\begin{cases} 2x - x^2 > 0 \\ 1 - \frac{x^2}{2} > 0 \end{cases} \Rightarrow 0 < x < \sqrt{2}.$$

Для любого х из этого интервала выполнены неравенства

$$2x-x^2=1-(1-x)^2 \le 1$$
, $1-\frac{x^2}{2} \le 1$,

и, следовательно,

$$\log_3(2x-x^2) \le 0$$
, $\log_{11}\left(1-\frac{x^2}{2}\right) \le 0$.

При $a \neq -2$ и $a \neq \frac{1}{3}$ имеем

$$(1 + (a+2)^2) \log_3 (2x - x^2) \le \log_3 (2x - x^2)$$

$$(1 + (3a-1)^2) \log_{11} \left(1 - \frac{x^2}{2}\right) \le \log_{11} \left(1 - \frac{x^2}{2}\right).$$

Складывая последние два неравенства и сравнивая полученный результат с исходным уравнением, получаем, что оно может иметь решение только для значений x, удовлетворяющих системе уравнений

$$\begin{cases} \log_3(2x - x^2) = 0 \\ \log_{11}(1 - x^2/2) = 0 \end{cases} \Rightarrow \begin{cases} 2x - x^2 = 1 \\ 1 - x^2/2 = 1. \end{cases}$$

Эта система уравнений решений не имеет. Следовательно, при $a\neq -2$ и $a\neq \frac{1}{3}$ исходное уравнение не имеет корней.

При a=-2 исходное уравнение примет вид

$$\log_3(2x-x^2) + 50\log_{11}(1-x^2/2) = \log_3(2x-x^2) + \log_{11}(1-x^2/2).$$

Это уравнение равносильно уравнению $\log_{11}(1-x^2/2)=0$, не имеющему корней на ОДЗ $0< x<\sqrt{2}$.

При a = 1/3 исходное уравнение принимает вид

$$\frac{-58}{9}\log_3(2x-x^2) + \log_{11}(1-x^2/2) = \log_3(2x-x^2) + \log_{11}(1-x^2/2).$$

Это уравнение на ОДЗ равносильно уравнению $\log_3(2x-x^2) = 0 \Rightarrow 2x-x^2=1$, имеющему единственный корень x=1, принадлежащий ОДЗ.

Итак, при a=1/3 исходное уравнение имеет единственный корень x=1; при $a\neq 1/3$ уравнение корней не имеет. \blacktriangle

Пример 8. Указать все a, при которых уравнение $\log_2 x + \log_a x + \log_4 x = 1$ имеет решения и найти эти решения.

$$\triangle \log_2 x + \frac{\log_2 x}{\log_2 a} + \frac{1}{2} \log_2 x = 1 \Rightarrow$$

$$\Rightarrow \log_2 a \log_2 x + \log_2 x + \frac{1}{2} \log_2 x \log_2 a = \log_2 a \Rightarrow$$

$$\Rightarrow \left(\frac{3}{2}\log_2 a + 1\right)\log_2 x = \log_2 a \Rightarrow \log_2 x^{\frac{3}{2}\log_2 a + 1} =$$

$$= \log_2 a \Rightarrow x^{\frac{3}{2}\log_2 a + 1} = a \Rightarrow x = a^{\frac{2}{3\log_2 a + 2}}.$$

ОДЗ
$$-a > 0$$
, $a \ne 1$, $3\log_2 a + 2 \ne 0$, т. е. $a \ne 2^{-2/3}$.

Other:
$$a > 0$$
, $a \ne 2^{-2/3}$, $a \ne 1$ $x = a^{-\frac{2}{3\log_2 a + 2}}$.

Пример 9. Найти все значения a, для которых уравнение $\lg(ax) = 2\lg(x+1)$ имеет единственный корень.

 \triangle ОЛЗ данного уравнения определяется системой неравенств ax > 0 и x+1>0. Следовательно уравнение (1) имеет единственный корень тогда и только тогда, когда система

$$\begin{cases} ax = (x+1)^2 \\ ax > 0 \\ x+1 > 0 \end{cases}$$
 имеет единственное решение.

Уравнение $ax=(x+1)^2$, т. е. уравнение $x^2+(2-a)x+1=0$ имеет решение только тогда, когда $D=(2-a)^2-4\geqslant 0$, т. е. при $a\leqslant 0$ и $a\geqslant 4$.

При
$$a \geqslant 4$$
 система $\begin{cases} ax > 0 \\ x+1 > 0 \end{cases}$ выполняется при $x > 0$.

Чтобы на этом множестве уравнение $x^2 + (2-a)x + 1 = 0$ имело единственное решение, необходимо, чтобы график трехчлена располагался так, как показано на рис. 28 (1-й и 2-й случаи).

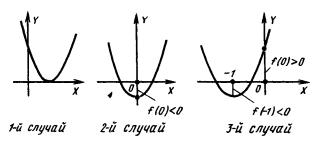


Рис. 28

В первом случае D=0 при a=4, а корень x=1 принадлежит множеству x>0.

Во втором случае f(0) = 0 + (2 - a)0 + 1 < 0 неравенство ложно, т. е. нет таких a, при которых это условие выполнялось бы.

При a=0 не выполняется условие ax>0.

При
$$a < 0$$
 система $\begin{cases} ax > 0 \\ x+1 > 0 \end{cases}$ выполняется для $x \in (-1; 0)$

и для того чтобы уравнение $x^2 + (2-a)x + 1 = 0$ имело единственный корень на этом множестве, необходимо и достаточно выполнение следующих условий (рис. 28, 3-ий случай):

$$\begin{cases} f(-1) < 0 \\ f(0) > 0 \end{cases} \Rightarrow \begin{cases} f(-1) = 1 + (2-a)(-1) + 1 < 0 \\ f(0) = 0 + (2-a)(-1) + 1 > 0 \end{cases} \begin{cases} a < 0 \\ 1 > 0 \end{cases} \quad a < 0.$$

Итак, исходное уравнение имеет единственный корень гогда и только тогда, когда a < 0 и a = 4.

Пример 10. При каких значениях a уравнение $\log_{x-1}(x+a) = 0.5$ имеет единственное решение?

 \triangle . Обозначим x-1=t, тогда x=t+1 и $\log_t(t+1+a)=1/2$. Обозначим еще b=1+a, в результате исходное уравнение примет вид

$$\log_{l}(t+b) = 0.5. \tag{1}$$

Потенцируя по основанию t, получим

$$t + b = \sqrt{t} \,. \tag{2}$$

Всякое решение (1) является, очевидно, и решением (2). Обратно, если t решение (2) и

$$t > 0, \ t \neq 1, \tag{3}$$

то логарифмируя (2) по основанию t, получим, что (1) — верное равенство.

Решив (2) как квадратное относительно \sqrt{t} уравнение найдем, что

a)
$$\sqrt{t} = \frac{1}{2} (1 + \sqrt{1 - 4b})$$
, 6) $\sqrt{t} = \frac{1}{2} (1 - \sqrt{1 - 4b})$.

Ясно, что (2) имеет решения, если только $1-4b\geqslant 0$, т. е. $b\leqslant 1/4$. При этом условии $1+\sqrt{1-4b}\geqslant 1$, поэтому формула (1) определяет решение $t_1=\frac{1}{2}(1-2b+\sqrt{1-4b})$ уравнения (2). Первое из условий (3) для этого решения, очевидно, выполнено. Кроме того, из (1) видно, что равенство $\sqrt{t}=1$ (а значит, и t=1) возможно только при b=0. Таким образом, если $b\leqslant 1/4$ и $b\neq 0$, то а) задает решение t_1 уравнения (1). Рассмотрим формулу б). Условие $\sqrt{t}>0$ (а значит, и t>0) из (3) выполнено тогда и только тогда, когда $1-\sqrt{1-4b}>0$, откуда b>0. При этом $1-\sqrt{1-4b}<1$, а $\sqrt{t}<1/2$ и t<1/4<1, т. е. выполнено и второе из условий (3). Значит, формула б) задает решение $t_2=\frac{1}{2}(1-2b-\sqrt{1-4b})$ уравнения (1) если 0< b<1/4 В ито-

 $=\frac{1}{2}(1-2b-\sqrt{1-4b})$ уравнения (1), если $0 < b \le 1/4$. В итоге получаем, что при b < 0 уравнение (1) имеет одно решение t_1 ,

а при $0 < b \le 1/4$ решениями (1) являются и t_1 и t_2 , причем $t_1 = t_2$ только при b = 1/1. Значит, (1) и вместе с тем и исходное уравнение имеют единственное решение только при b < 0 или b = 1/4, или, что то же, при a < -1 или a = -3/4.

Ответ: a < -1, a = -3/4.

Второе решение. Потенцируя исходное уравнение на ОДЗ: $x-1>0,\ x>1;\ x-1\neq 1,\ x\neq 2;\ x+a>0,\ x>-a,$ получим $x+a=(x-1)^{1/2}.$

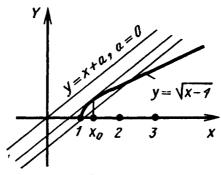


Рис. 29

Графическая иллюстрация левой и правой части последнего условия показана на рис. 29. Линия y=x+a перемещается вниз (по оси Y) при уменьшении a. Первая совместная точка обеих линий — это точка касания с абсциссой x_0 . Найдем значение x_0 , для чего возьмем производную от функции $y=\sqrt{x-1}$ $y'=\frac{1}{2\sqrt{x-1}}$. Известно, что $y'(x_0)=1$ (ведь y=x+a — касательная), тогда $y'(x_0)=\frac{1}{2\sqrt{x_0-1}}=1$, $x_0=\frac{5}{4}$. Тогда $y_0=\sqrt{x_0-1}=\frac{1}{2\sqrt{x_0-1}}=1$ — $\frac{5}{4}-1=\frac{1}{2}$. Теперь найдем значение a этой касательной $\frac{1}{2}=\frac{5}{4}+a\Rightarrow=-\frac{3}{4}$. Видно, что одна совместная точка будет при a<-1.

Пример 11. Определить, при каких a уравнение $\log_3(9^x + 9a^3) \stackrel{.}{=} x$ имеет ровно два решения.

 \triangle Пусть a — некоторое фиксированное число. Область допустимых значений данного уравнения состоит из всех чисел x, удовлетворяющих неравенству $9^x + 9a^3 > 0$. Значит, если $a \ge 0$, то ОДЗ совпадает со множеством всех действительных чисел, если a < 0, то ОДЗ есть множество $x > \log_9(-9a^3)$.

На ОДЗ данное уравнение равносильно уравнению $9^x + 9a^3 = 3^x$. Обозначив 3^x через t, получим $t^2 - t + 9a^3 = 0$ (*). Дискри-

минант этого уравнения $D=1-36a^3$. Поэтому, если $1-36a^3<0$, т. е. если $a>\frac{1}{\sqrt[3]{36}}$, то уравнение (*) не имеет корней. Не

имеет их тогда и исходное уравнение. Если $D\!=\!0$, то $a\!=\!1/\sqrt[3]{36}$ и уравнение (*) имеет единственный корень, что не удовлетворяет

условию задачи.

Если D>0, т. е. $a<1/\sqrt[3]{36}$, то уравнение (*) имеет два корня $t_1=\frac{1-\sqrt{1-36a^3}}{2}$ и $t_2=\frac{1+\sqrt{1-36a^3}}{2}$. Значит, исходное уравнение равносильно совокупности двух уравнений

$$3^x = \frac{1 - \sqrt{1 - 36a^2}}{2}$$
 и $3^x = \frac{1 + \sqrt{1 - 36a^3}}{2}$. (**)

При $a \leqslant 0 \, \frac{1-\sqrt{1-36a^3}}{2} \leqslant 0$ и первое уравнение (**) решений не имеет. Тогда исходное уравнение равносильно на своей ОДЗ второму уравнению (**), которое имеет единственное решение

$$x = \log_3 \frac{1 + \sqrt{1 - 36a^3}}{2}$$
.

Следовательно, при $a \leqslant 0$ исходное уравнение имеет не более одного решения.

Если $a \in]0; 1/\sqrt[3]{36}[$, то совокупность уравнений (**) имеет корни

$$x_1 = \log_3 \frac{1 - \sqrt{1 - 36a^3}}{2}$$
 и $x_2 = \log_3 \frac{1 + \sqrt{1 - 36a^3}}{2}$.

В этом случае ОДЗ исходного уравнения совпадает с множеством R и значит, уравнение имеет в точности два корня x_1 и x_2 .

Ответ: $a \in]0; 1/\sqrt[3]{36}[.$

Пример 12. Решить уравнение $\sqrt{\log_x(ax)} \cdot \log_a x = -\sqrt{2}$.

△ Допустимыми значениями неизвестного и параметра являются значения, удовлетворяющие системе неравенств

$$\begin{cases} x > 0 \\ x \neq 1 \\ a > 0 \\ a \neq 1 \\ \log_x(ax) \geqslant 0 \end{cases}$$

или x>0 и $x\ne 1$; a>0 и $a\ne 1$; причем, если 0< x<1, то 0< ax<<1, а если x>1, то ax>1.

Так как правая часть уравнения отрицательна, то решениями уравнения могут быть только те значения x и a, при которых $\log_a x < 0$, т. е., если a > 1, то 0 < x < 1, а если 0 < a < 1, то x > 1.

Преобразуем данное уравнение:

$$\sqrt{\frac{\log_a x + 1}{\log_a x}} \log_a x = -\sqrt{2}.$$

Так как уравнение может иметь решение только при $\log_a x < 0$, то $-\sqrt{\log_a^2 x + \log_a x} = -\sqrt{2}$ или $\log_a^2 x + \log_a x - 2 = 0$, откуда находим $\log_a x = -2$ и $\log_a x = 1$. Но $\log_a x = 1 > 0$ уравнению не удовлетворяет.

Исследуем $\log_a x = -2$ или $x = \frac{1}{a^2}$. Если 0 < x < 1, то 0 < < ax < 1, или $0 < a = \frac{1}{a^2} < 1$, откуда a > 1. Если x > 1, то ax > 1 или $a = \frac{1}{a^2} < 1$, откуда 0 < a < 1. Значит $x = \frac{1}{a^2}$, если 0 < a < < 1, a > 1. \blacktriangle

Пример 13. Решить уравнение

$$1 + \log_x \frac{4 - x}{100} = (\lg \lg a - 2) \log_x 10.$$

△ Допустимые значения неизвестного и параметра находим, решая систему неравенств

$$\begin{cases}
4 - x > 0 \\
x > 0 \\
x \neq 1 \\
\lg a > 0
\end{cases}$$

или 0 < x < 1, 1 < x < 4 и a > 1. После потенцирования получаем $x \frac{4-x}{100} = \frac{10 \lg \lg a}{100}$ или $\frac{4x-x^2}{100} = \frac{10 \lg \lg a}{100}$, откуда в соответствии с основным логарифмическим тождеством следует, что $x^2-4x+\lg a=0$, $x_1=2-\sqrt{4-\lg a}$, $x_2=2+\sqrt{4-\lg a}$. Эти корни действительные, если $4-\lg a \geqslant 0$ или $a \leqslant 10^4$. Учитывая, что a > 1 получаем $1 < a < 10^4$.

При a=1000 недопустимым значением неизвестного является $x_1=1$, т. е. уравнение имеет один корень $x_2=3$.

При $a = 10\ 000$ имеем $x_1 = x_2 = 2$.

Таким образом, $x_{1,2} = 2 \pm \sqrt{4 - \lg a}$, если 1 < a < 1000 и $1000 < a < 10\,000$; x = 3, если a = 1000; x = 2, если $a = 10\,000$.

Пример 14. Решить уравнение

$$\sqrt{\log_a^4 \sqrt{ax} + \log_x^4 \sqrt{ax}} + \sqrt{\log_a^4 \sqrt{\frac{x}{a}} + \log_x^4 \sqrt{\frac{a}{x}}} = a.$$

 \triangle Допустимые значения неизвестного и параметра x>0, $x\ne 1$ и a>0, $a\ne 1$. Преобразуя подкоренные выражения, получаем:

$$\begin{split} &\sqrt{\frac{1}{4}}(1+\log_a x)+\frac{1}{4}(1+\log_x a)+\\ &+\sqrt{\frac{1}{4}}(\log_a x-1)+\frac{1}{4}(\log_x a-1)=a\\ \text{или} &\sqrt{\log_a x+2+\frac{1}{\log_a x}}+\sqrt{\log_a x-2+\frac{1}{\log_a x}}=2a,\\ &\sqrt{\frac{(\log_a x+1)^2}{\log_a x}}+\sqrt{\frac{(\log_a x-1)^2}{\log_a x}}=2a, \end{split}$$

 $|\log_a x + 1| + |\log_a x - 1| = 2a\sqrt{\log_a x} (\log_a x > 0).$

1) Если $0 < \log_a x < 1$, то $2 = 2a\sqrt{\log_a x}$ или $\log_a x = 1/a^2$ и $x = a^{1/a^2}$. Это значение x удовлетворяет уравнению, если $0 < \frac{1}{a^2} < 1$, т. е. при a > 1.

2) Если $\log_a x = 1$, т. е. x = a, то получаем 2 - 2a, или a = 1 — недопустимое значение параметра. Следовательно, $x \neq a$.

3) Если $\log_a x > 1$, то $2\log_a x = 2a\sqrt{\log_a x}$ или $\log_a x = a^2$ и $x = a^{a^2}$. Это значение x удовлетворяет уравнению, если $\log_a a^2 > 1$, откуда следует, что $a^2 > 1$ или a > 1.

следует, что $a^2 > 1$ или a > 1. Если a > 1, то $x_1 = a^{a^{-2}}$, $x_2 = a^{a^2}$. Если 0 < a < 1, то уравнение решений не имеет. \blacktriangle

Пример 15. При 0 < a < 1/4 решить неравенство $\log_{x+a} 2 < \log_x 4$.

 \triangle Заметим, что x > 0 и $x \neq a$.

Данное неравенство равносильно неравенству $\frac{1}{\log_2(x+a)}$ <

$$<rac{2}{\log_2 x}$$
, т. е. неравенству $rac{2}{\log_2 x}-rac{1}{\log_2 (x+a)}>0$, откуда
$$rac{2\log_2 (x+a)-\log_2 x}{\log_2 x\cdot \log_2 (x+a)}>0. \tag{1}$$

Если 0 < x < 1, то $\log_2 x < 0$; если x > 1, то $\log_2 x > 0$. Поэтому неравенство (1) равносильно совокупности двух систем:

$$\begin{cases}
0 < x < 1 \\
\frac{2\log_2(x+a) - \log_2 x}{\log_2(x+a)} < 0, & (2)
\end{cases}
\begin{cases}
x > 1 \\
\frac{2\log_2(x+a) - \log_2 x}{\log_2(x+a)} > 0.
\end{cases}$$
(3)

Решим систему (2). При 0 < x + a < 1

имеем: $\log_2(x+a) < 0$;

при x+a>1 имеем $\log_2(x+a)>0$. Поэтому система (2) равносильна совокупности двух систем $(a>0,\ x>0)$.

$$\begin{bmatrix}
\begin{cases}
0 < x < 1 \\
0 < x + a < 1 \\
2\log_2(x + a) - \log_2 x > 0
\end{cases}
\Leftrightarrow
\begin{cases}
\begin{cases}
0 < x < 1 \\
x < 1 - a \\
\log_2(a + x)^2 > \log_2 x
\end{cases}
\Leftrightarrow
\begin{cases}
0 < x < 1 \\
x < 1 - a \\
\log_2(a + x)^2 > \log_2 x
\end{cases}
\Leftrightarrow
\begin{cases}
0 < x < 1 \\
x > 1 - a \\
\log_2(a + x)^2 < \log_2 x
\end{cases}
\Leftrightarrow$$

$$\begin{cases}
0 < x < 1 - a \\ (x + a)^2 > x \\ 1 - a < x < 1 \\ (x + a)^2 < x
\end{cases}
\Leftrightarrow
\begin{cases}
0 < x < 1 - a \\ x^2 - (1 - 2a)x + a^2 > 0 \\ 1 - a < x < 1 \\ x^2 - (1 - 2a)x + a^2 < 0
\end{cases}$$
(4)

При всех 0 < a < 1/4 дискриминант D квадратного трехчлена $x^2(1-2a)x+a^2$ положителен (D=1-4a); поэтому $x^2-(1-2a)x+a^2=(x-x_1)(x-x_2)$, где $x_1=1/2-a-\sqrt{1/4-a}$ и $x_2=1/2-a+\sqrt{1/4-a}$, причем $x_1 < x_2$.

Числа x_1 и x_2 удовлетворяют системе (по теореме Виета)

$$\begin{cases} x_1 x_2 = a^2 \\ x_1 + x_2 = 1 - 2a, \end{cases}$$

откуда следует, что при заданных ограничениях на a чила x_1 и x_2 положительны. Кроме того, поскольку $x_1+x_2=1-2a=1-a-a<1-a$, то каждое из них меньше 1-a. Поэтому система (5) решений не имеет.

Решением системы (4), а следовательно, и системы (2) (при 0 < a < 1/4) являются все x из интервалов $0 < x < x_1$ и $x_2 < x < < 1-a$.

-a. Решим систему (3). Неравенство $\frac{2\log_2(x+a)-\log_2x}{\log_2(x+a)}>0$ равно-

сильно неравенству
$$2 - \frac{log_2x}{\log_2(x+a)} > 0.$$
 (6)

При x>1 и 0< a<1/4 справедливо неравенство x< x+a, откуда в силу возрастания функции $y=\log_2 x$ имеем $\log_2 x< <\log_2 (x+a)$.

Поскольку $\log_2 x > 0$ и $\log_2(x+a) > 0$, то $0 < \frac{\log_2 x}{\log_2(x+a)} < 1$. Следовательно, неравенство (6) справедливо для всех x > 1, 0 < a < 1/4.

Таким образом, множество всех решений системы (3) есть промежуток $1 < x < +\infty$.

Итак, при любом $a \in (0; 1/4)$; множество всех решений исходного неравенства состоит из трех промежутков: $0 < x < 1/2 - a - \sqrt{1/4 - a}$, $1/2 - a + \sqrt{1/4 - a} < x < 1 - a$, $1 < x < + \infty$.

Пример 16. Найти все значения a, при которых неравенство $1 + \log_5(x^2 + 1) = \log_5(ax^2 + 4x + a)$ выполняется для любого значения x.

 \triangle Данное неравенство равносильно неравенству $\log_5 5(x^2 + 1) \geqslant \log_5 (ax^2 + 4x + a)$, а это неравенство равносильно системе

$$\begin{cases} 5(x^2+1) \geqslant ax^2+4x+a \\ ax^2+4x+a > 0 \end{cases} \Rightarrow \begin{cases} (a-5)x^2+4x+(a-5) \leqslant 0 \\ ax^2+4x+a > 0 \end{cases}$$
 (1)

Таким образом, требуется найти все значения a, при которых системе (1) удовлетворяет любое значение x. а это означает, что каждое неравенство системы должно выполняться при всех значениях x.

Первое неравенство системы (1) выполняется при всех $x \in \mathbb{R}$ при следующих условиях:

$$\begin{cases} a-5 < 0 & \begin{cases} a < 5 \\ D < 0, \end{cases} & \begin{cases} a < 5 \\ D = 4 - (a-5)^2 < 0, \end{cases} \Leftrightarrow \begin{cases} a < 5 \\ a < 3 \text{ if } a > 7 \end{cases} \Leftrightarrow a < 3.$$

Второе неравенство системы (1) выполняется при всех $x \in \mathbb{R}$ при следующих условиях:

$$\begin{cases} a > 0 \\ D = 4 - a^2 < 0 \end{cases} \Leftrightarrow \begin{cases} a > 0 \\ a < -2 \text{ if } a > 2 \end{cases} \Leftrightarrow a > 2.$$

Удовлетворяют системе $a \in (2; 3)$. \blacktriangle

Пример 17. При каких значениях p функция $lg(6-p-10x+5(10-p)x^2)$ определена при всех $x \in \mathbb{R}$?

 \triangle Функция $\lg(6-p-10x+5(10-p)x^2)$ определена при всех $x \in \mathbb{R}$; если квадратный трехчлен, стоящий под знаком логарифма, принимает при всех x только положительные значения, т. е. $5(10-p)x^2-10x-p+6>0$, то это возможно, если 5(10-p)>0 и D<0, т. е. справедлива система

$$\begin{cases} 5(10-p) > 0 \\ D = 5^2 - 5(10-p)(6-p) < 0 \end{cases} \Leftrightarrow \begin{cases} p < 10 \\ -5(p-5)(p-11) < 0 \end{cases} \Leftrightarrow \begin{cases} p < 10 \\ (p-5)(p-11) > 0. \Rightarrow p < 5. \end{cases}$$

Other: $p \in (-\infty; 5)$.

Пример 18. Найти все значения a, при которых каждое решение неравенства $\log_{4-x}(2x^2-5x-3) \leqslant 1$ будет решением неравенства $x^2+a^2x-2a^4 \leqslant 0$.

△ Найдем ОДЗ первого неравенства

$$\begin{cases} 4-x > 0 \\ 2x^2-5x-3 > 0 \Leftrightarrow \begin{cases} x < 4 \\ x < -1/2 \text{ или } x > 6 \\ x \neq 3 \text{ или } \text{ ОДЗ } x < -1/2. \end{cases}$$

Теперь решим это неравенство на ОДЗ. $\log_{4-x}(2x^2-5x-3)\leqslant \log_{4-x}(4-x) \Leftrightarrow 2x^2-5x-3\leqslant 4-x, \quad \text{т. к.}$ на ОДЗ 4-x>1. Далее $2x^2-4x-7\leqslant 0$ или $\frac{2-3\sqrt{2}}{2} < x < \frac{2+3\sqrt{2}}{2}$ с учетом ОДЗ $\frac{2-3\sqrt{2}}{2}\leqslant x < -\frac{1}{2}$.

Теперь, чтобы промежуток $\frac{2-3\sqrt{2}}{2} \leqslant x < -\frac{1}{2}$ входил в решение неравенства $x^2+a^2x-2a^4\leqslant 0$ нужно, чтобы он располагался между корнями трехчлена $f(x)=x^2+a^2x-2a^4$ (рис. 30).

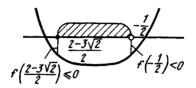


Рис. 30

Это возможно если:

$$\begin{cases} f\left(\frac{2-3\sqrt{2}}{2}\right) = \left(\frac{2-3\sqrt{2}}{2}\right) + a^2\left(\frac{2-3\sqrt{2}}{2}\right) - 2a^4 \le 0 \\ f\left(-\frac{1}{2}\right) = \frac{1}{4} - \frac{a^2}{2} - 2a^4 \le 0. \end{cases}$$

Решим отдельно эти неравенства. Обозначим $\frac{2-3\sqrt{2}}{2}=b<<0$. Тогда $b^2+ba^2-2a^4\leqslant 0\Leftrightarrow 2a^4-ba^2-b^2\geqslant 0$. Найдем корни трехчлена

$$a_{1,2}^2 = \frac{b \pm \sqrt{b^2 + 8b^2}}{4} = \frac{b + 3b}{4} = \binom{b}{-b/2}$$

Тогда решения неравенства $a^2 \leqslant b$ или $-b/2 \leqslant a^2$. Первое решение невозможно ни при каких a, т. к. b < 0. Из второго решения

получаем
$$|a| \geqslant \sqrt{\frac{3\sqrt{2}-2}{2}}$$
 (*).

Решаем второе неравенство $\frac{1}{4} - \frac{a^2}{2} - 2a^4 < 0 \Leftrightarrow$

$$8a^4 + 2a^2 - 1 < 0$$

Корни трехчлена: $a_{1,2}^2=\frac{-1\pm 3}{8}$ тогда $-\frac{1}{2}< a^2<\frac{1}{4}$ или $a^2<\frac{1}{4}\Leftrightarrow |a|<\frac{1}{2}$. (**)

Пересечением неравенств (*) и (**) является множество

$$|a| \geqslant \sqrt{\frac{3\sqrt{2}-2}{2}}$$
.

Упражнения

- 1. Найти все значения параметра $\it p$, при которых уравнение имеет хотя бы одно решение.
- 1) $(p+1)4^x + 4 \cdot 2^x + (p-2) = 0$; 2) $(p-3)4^x 8 \cdot 2^x + p + 3 = 0$; 3) $(p-3)9^x-6\cdot 3^x+p+5=0$; 4) $(p+5)9^x+6\cdot 3^xp-3=0$; 5) $(p-5)9^x+6\cdot 3^xp-3=0$ $-1)4^{x}-4\cdot 2^{x}+p+2=0.$

Ответы: 1) $p \in [-2; 1) \cup (1; 3);$

- 2) $p \in (-5; -3) \cup (-3; 3) \cup [5];$
- 3) $p \in (-3; 2];$ 4) $p \in [-5; 3) \cup \{-6\};$
- 5) $p \in (-2; 2)$.
- 2. При каждом значении параметра решить уравнение.
- 1) $25^x + a^2(a-1)5^x a^5 = 0$, 2) $(p-1)4^x 4 \cdot 2^x + p + 2 = 0$.

Ответы: 1) При a < 0 $x_1 = \log_5 a^2$, $x_2 = 3\log_5 |a|$; при a = 0 решений нет; при a > 0 $x = 2\log_5 a$;

2) При
$$p \in (-2, 1) \cup (1; 2]$$
 $x_1 = \log_2 \frac{2 - \sqrt{-p^2 - p + 6}}{p - 1};$ $x_2 = \log_2 \frac{2 + \sqrt{-p^2 - p + 6}}{p - 1};$

при $p = 1 x = \log_2 3/4$.

- 3. Найти все значения параметра р, при которых уравнение не имеет решений.
- 1) $(4-p)4^x 5 \cdot 2^x + \frac{5}{8}(1-p) = 0$; 2) $(p-1)9^x + 2p3^x + 3p 2) =$ =0; 3) $p \cdot 4^{x+1} - (3p+1)2^x + p = 0$; 4) $(3p+1)4^x + 2(p-1)2^x + (3p-1) = 0$; 5) $(p-4)9^x + (p+1)3^x + (2p-1) = 0$.

Ответы: 1) $p \in (-\infty; -2] \cup (1; +\infty);$

- 2) $p \in (-\infty; 1/2) \cup [1; +\infty);$
- 3) $p \in (-\infty; 0] \cup (1; +\infty);$
- 4) $p \in (-\infty; -1) \cup [1; +\infty);$
- 5) $p \in (-\infty; 1/2) \cup [4; +\infty)$.
- 4. Найти все значения параметра p, при которых уравнение имеет два решения.
 - 1) $(p-1)4^x < 4 \cdot 6^x + (p+2)9^x = 0;$ 2) $(p+1)4^x + 4 \cdot 6^x + (p-2)9^x = 0.$

Ответы: 1) $p \in (-3; -2);$

- 2) $p \in (2; 3)$.
- 5. Найти все значения параметра р, при которых уравнение имеет хотя бы одно решение.
- 1) $(p-3)4^x-8\cdot6^x+(p+3)9^x=0$; 2) $(p+5)9^x+6^{x+1}+(p-3)4^x=0$

Ответы: 1) $p \in (-5; -3) \cup (-3; 3)$:

2) $p \in [-4; 3)$.

6. Найти все значения параметра р, при которых уравнение имеет одно решение.

1)
$$(p+1)4^x + 8 \cdot 6^x + (p-5)9^x = 0;$$
 2) $(p-1)16^x - 4 \cdot 36^x + (p+2)81^x = 0.$

Ответы: 1) $p \in [-1; 5);$

2) $p \in (-2; 1]$.

- 7. При каждом a указать, для каких x выполняется неравенство.
- 1) $a^2 2 \cdot 4^{x+1} a \cdot 2^{x+1} > 0$; 2) $4^{2x+1} \cdot a^2 65a \cdot 4^{x-1} + 1 > 0$; 3) $4^{x+1} \cdot a^2 33 \cdot 2^x \cdot a + 8 > 0$; 4) $16^{x+1/2} < 9a \cdot 4^x + a^2$.

Ответы: 1) При a > 0 $x < \log_2 a - 2$; при a = 0 решений нет; при $a < 0 \ x < \log_2(-a) - 1;$

2) при $\tilde{a} \leqslant 0$ $x \in \mathbb{R}$; при a > 0 $x > \log_4(1/a)$, а также при

 $x < \log_4(1/16a)$;

3) при $a \le 0$ $x \in \mathbb{R}$; при a > 0 $x > 3 - \log_2 a$, а также при $x < -2 - \log_2 a$;

4) при a < 0 $x < \log_4(-a/2)$; при a = 0 решений нет; при $a > 0 x < \log_4(3a/4)$.

8. Найти все значения параметра a, при которых неравенство $4^x - a \cdot 2^x - a + 3 \le 0$ имеет хотя бы одно решение.

Ответ: $a \ge 2$.

9. Найти все значения параметра а, при которых неравенство $a \cdot 9^{x} + 4(a-1)3^{x} + a > 1$ справедливо при всех x.

Ответ: $a \geqslant 1$. 10. Указать все а, при которых уравнение имеет решения и найти эти решения.

1) $\log_3 x + 3\log_a x + \log_9 x = 5$; 2) $\log_4 x + \log_a x + \log_{16} x = 1$.

Ответы: 1) a > 0, $a \ne 1/9$, $a \ne 1$ $x = 3 \frac{10 \log_3 a}{3 \log_3 a + 6}$;

2)
$$a > 0$$
, $a \ne 4^{-2/3}$, $a \ne 1$ $x = 4 \frac{2\log_4 a}{3\log_4 a + 2}$.

- 11. При каких значениях р функция определена для всех значений x?
- 1) $\ln[(4-p)x^2-5x+5(1-p)/8]$, 2) $\ln[(p-1)x^2+2px+3p-2]$,
- 3) $\lg [(p-4)x^2 + (p+1)x + 2p-1]$, 4) $\lg [(3p+1)x p(4+x^2)]$.

5) $\lg [(p+1)x^2-2(p-1)x+3(p-1)]$.

Ответы: 1) p < -1; 2) p > 2; 3) p > 5; 4) p < -1; 5) p > 1.

12. Найти все значения a, при которых неравенство выполняется при любом значении х.

1) $\log_{a(a+1)}(|x|+4) > 1$; 2) $\log_{a/(a+1)}(x^2+2) > 1$.

Ответы:

1)
$$\frac{-1-\sqrt{17}}{2} < a < \frac{-1-\sqrt{5}}{2}$$
; $\frac{-1+\sqrt{5}}{2} < a < \frac{-1+\sqrt{17}}{2}$, 2) $a < -2$

13. Найти все значения x, по абсолютной величине меньше 3, которые при всех $a \ge 5$ удовлетворяют неравенству

$$\log_{2a-x^2}(x-2ax) > 1$$
.

Ответ: $x \in (-3; -1)$.

14. Найти все значения x > 1, которые при всех b, удовлетворяющих условию $0 < b \le 2$ являются решениями неравенства $\log \frac{x^2 + x}{b} (x + 2b - 1) < 1.$

Ответ: x > 3.

15. Найти все значения параметра а, при которых неравенство $1 + \log_2(2x^2 + 2x + \frac{7}{2}) \geqslant \log_2(ax^2 + a)$ имеет хотя бы одно решение.

Ответ: $0 < a \le 8$.

16. Для каждого знаения параметра а решить уравнение.

1)
$$\sqrt{a(2^x-2)+1} = 1-2^x$$
; 2) $144^{|x|}-2\cdot 12^{|x|}+a=0$;

3)
$$a^{\log_a^{4x}} + x^{\log_a^{3x}} = 2a$$
; 4) $a^{\log_{\sqrt{b}}^{x}} - 5x^{\log_b^{a}} + 6 = 0$; 5) $2\log_x a + \log_{ax} a + 3\log_{a^2x} a = 0$.

Ответы: 1) при $0 < a \leqslant 1$ $x = \log_2 a$; при $a \leqslant 0$ и a > 1 решений нет:

- ?) при $a \le 1$ $x = \pm \log_{12}(1 + \sqrt{1-a})$; при a > 1 решений нет;
- 3) при a > 0, $a \ne 1$ $x_1 = a$, $x_2 = \frac{1}{a}$;
- 4) при b > 0, $b \ne 1$, $x_1 = 3^{\log_a b}$, $x_2 = 2^{\log_a b}$;
- 5) при a > 0, $a \ne 1$, $x_1 = \frac{\sqrt{a}}{a}$, $x_2 = a^{-4/3}$;

при a=1 $x \in (0; 1) \cup (1; +\infty)$.

17. Решить уравнение.

1)
$$\log_{\sqrt{x}} a \log_{a^2} \frac{a^2}{2a-x} = 1$$
; 2) $\log_x m \log_{\sqrt{m}} \frac{m}{\sqrt{2m-x}} = 1$;

3)
$$\log_{\sqrt{a}} \frac{\sqrt{2a-x}}{a} - \log_{1/a} x = 0$$
; 4) $(3\log_a x - 2) \log_x^2 a = \log_{\sqrt{a}} x - 3$;

5)
$$\log_a x + \log_{\sqrt{a}} x + \log_{\sqrt{a^2}} x = 27$$
; 6) $\log_a \sqrt{4 + x} + 3\log_{a^2} (4 - x) - 2$

$$-\log_{a^4}(16-x^2)^2=2; 7) \ 2^{\frac{a+3}{a+2}} \cdot 3^{\frac{1}{2x(a+2)}}=4^{\frac{1}{x}};$$

8) $\lg 2x + \lg (2-x) = \lg \lg p$.

Ответы: 1) a, при a > 0, $a \ne 1$;

- 2) m, при m > 1, $m \neq 1$;
- 3) a, при a > 0, $a \ne 1$;
- 4) 1/a; \sqrt{a} ; a^2 при a > 0, $a \ne 1$; 5) a^6 , при a > 0, $a \ne 1$;

- 6) $x = 4 a^2$ при 0 < a < 1 и $1 < a < 2\sqrt{2}$;
- 7) (2a-1)/(a+3) при $a\neq -2$, $a\neq -3$ и $a\neq 1/2$; нет корней при a=-2, a=-3 и a=1/2;
 - 8) $1-\sqrt{1-0.5\lg p}$; $1+\sqrt{1-0.5\lg p}$, где 1 .
- 18. Определить, при каких а уравнения имеют ровно два решения.
- 1) $\log_2(4^x a) = x$; 2) $x + \log_{1/2}(4^x + a^3) = 0$; 3) $x + \log_{1/3}(9^x 2a) = 0$; 4) $\log_5(25^x + 7a^3) = x$.

Ответ: 1) -1/4 < a < a;

- 2) $0 < a < \sqrt{1/4}$;
- 3) -1/8 < a < 0;
- 4) $0 < a < 1/\sqrt[3]{28}$.
- 19. При каких значениях a уравнение $\log_{x-a}(x-2)=2$ имеет единственное решение?

OBET: a = -7/4, a < -2.

20. Решить уравнение і) $\left(\frac{1+a^2}{2a}\right)^x - \left(\frac{1-a^2}{2a}\right)^x = 1$, 0 <

< a < 1; 2) $\log_{ax} x = n \log_{a^2 x} x$, где a > 0, $n \ne 1$, $n \ne 2$.

Ответы: 1) {2};

- 2) если $a \ne 1$, $n \ne 0$, то x = 1, $x = a^{(2-n)/(n-1)}$; если $a \ne 1$, n = 0, то x = 1; если a = 1, то решений нет.
 - 21. При каких значениях а уравнение:
- а) не имеет решений; б) имеет одно решение; в) имеет два решения; г) имеет больше двух решений;
 - 1) $\log_2(x^2+1) = \log_2(x+a)$; 1) $\log_2(x^2-1) = \log_2(x+a)$;
- 3) $\lg \frac{x}{x-1} = \lg(-x+a)$; 4) $\lg (x^2 |x| 2) = \lg (x/2 a)$;
- 5) $\ln(x|x-2|) = \ln\left(\frac{x}{2} + a\right);$ 6) $\lg|x^2 x 2| = \lg\left(\frac{x}{2} + a\right);$
- 7) $\lg \left| \frac{x}{x-1} \right| = \lg (-x+a).$

Ответы: 1) а) — при a < 3/4; б) при a = 3/4; в) при a > 3/4; 2) нет таких a;

- 2) а) при $a\leqslant -1$; б) при $a\in (-1;\ 1]$; в) при $a>1;\ г)$ нет таких a:
- 3) а) при $0 \leqslant a < 4$; б) при a < 0 и a = 4; в) при a > 4; г) нет таких a;
 - 4) а) при $a \leqslant -1$; б) $-1 \leqslant a \leqslant 1$; в) a > 1; г) нет таких a;
- 5) а) при $a \leqslant -1$; б) a > 21/16; в) $-1 < a \leqslant 0$; г) 0 < a < < 21/16 три решения;
- 6) а) $a \leqslant -1$; б) $a \in \emptyset$; в) $-1 < a \leqslant 1/2$; 33/16 < a; г) $1/2 < a \leqslant 33/16$ четыре решения;
 - 7) a) a=0; б) a<4, $a\neq0$; в) a=4, г) a>4 три решения.
 - 22. Решить неравенства:
- 1) $\log_a^2 x^2 > 1$, a > 0, $a \ne 1$; 2) $\sqrt{1 \log_a x} + \sqrt{1 + \log_a x} > a\sqrt{2}$.

 $a>0, a\neq 1; 3) \log_x(x-a)>2, a\in \mathbb{R}.$ Ответы: 1) при a>1 $|x|>\sqrt{a}$ или $0<|x|<1/\sqrt{a}$; при 0<a<1

- $0<|x|<\sqrt{2}$ или $|x|>1/\sqrt{a}$; 2) если 0< a<1, то $a^{-a\sqrt{2}-a^2}< x\leqslant a^{-1}$; если 1< a, то решений нет;
- 3) если a<0, то $1< x<(1+\sqrt{1-4a})/2$; если a=0, то решений нет; если $0< a \le 1/4$, то $a< x<(1-\sqrt{1-4a})/2$, $(1+\sqrt{1-4a})/2< < x<1$; если 1/4< a<1, то a< x<1; если $1\le a$, то решений нет. У казание. Построить для наглядности график функций x^2 и x-a.

7. РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ И НЕРАВЕНСТВ

РЕШЕНИЕ ЛИНЕЙНЫХ СИСТЕМ С ДВУМЯ НЕИЗВЕСТНЫМИ

Справочный материал

Система вида

$$\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2, \end{cases}$$
 (1)

где $a_1^2 + b_1^2 \neq 0$ и $a_2^2 + b_2^2 \neq 0$ называется линейной системой двух уравнений с двумя неизвестными.

Линейная система (1) может либо иметь единственное решение, либо иметь бесконечно много решений, либо не иметь решений.

Основные методы решения системы (1) — метод подстановки, метод исключения неизвестного и метод определителей.

Примеры с решениями

Пример 1. Для всех значений параметра a решить систему

$$\begin{cases} ax + (a-1)y = 1\\ (a+1)x - (5-3a)y = a. \end{cases}$$
 (1)

△ Применяя метод подстановки при решении данной системы, надо учитывать, что каждый из коэффициентов при неизвестных может обращаться в нуль. Поэтому если из какого-либо уравнения системы будем находить выражение одного из неизвестных (например, х) через другое, то надо отдельно рассмотреть случай обращения в ноль коэффициента при этом неизвестном.

Пусть a=0. Тогда данная система имеет вид

$$\begin{cases} 0 \cdot x - y = 1 \\ x - 5y = 0 \end{cases} \Rightarrow x = -5, y = -1.$$

Пусть $a \neq 0$, тогда из первого уравнения системы (1) имеем $x = \frac{1 - (a - 1)y}{a}$.

Подставляя $\frac{1-(a-1)y}{a}$ вместо x во второе уравнение, получим систему, равносильную данной:

$$\begin{cases} x = \frac{1 - (a - 1)y}{a} \\ (a + 1)\frac{1 - (a - 1)y}{a} - (5 - 3a)y = a \end{cases} \Rightarrow \begin{cases} x = \frac{1 - (a - 1)y}{a} \\ (2a^2 - 5a + 1)y = a^2 - a - 1. \end{cases}$$
 (2)

 $2a^2 - a - 1$ равняется нулю при

$$a = \frac{5 \pm \sqrt{17}}{4};$$

 a^2-a-1 равняется нулю при $a=rac{1\pm\sqrt{5}}{2}$.

Поэтому при $a=\frac{-5\pm\sqrt{17}}{2}$ второе уравнение системы (2) решения не имеет. Следовательно, исходная система также не имеет решений.

При $a \neq \frac{1 \pm \sqrt{17}}{8}$, $a \neq 0$ имеем $y = \frac{a^2 - a - 1}{2a^2 - 5a + 1}$, а следова тельно, $x = \frac{1 - (a - 1)\frac{a^2 - a - 1}{2a^2 - 5a + 1}}{a} = \frac{2a^2 - 5a + 1 - a^3 + a^2 + a + a^2 - a - 1}{a\left(2a^2 - 5a + 1\right)} = \frac{-a^3 + 4a^2 - 5a}{a\left(2a^2 - 5a + 1\right)} = \frac{-a^2 + 4a - 5}{2a^2 - 5a + 1}$.

Ответ: При a=0 x=-5, y=-1; при $a=\frac{5\pm\sqrt{17}}{4}$ решений нет; при $a\neq 0$, $a\neq \frac{5\pm\sqrt{17}}{8}$ имеем $x=\frac{-a^2+4a-5}{2a^2-5a+1}$, $y=\frac{a^2-a-1}{2a^2-5a+1}$. \blacktriangle

Метод исключения неизвестного рассмотрим на следующих примерах.

Пример 2. Для каждого значения a решить систему

$$\begin{cases} ax + a^2y = 1 \\ x + (a-1)y = a. \end{cases}$$

 \triangle Пусть a=0. Тогда система имеет вид

$$\left\{egin{array}{ll} 0\cdot x+0\cdot y=1 \ x-y=0 \end{array}
ight.$$
 Эта система решений не имеет.

Пусть $a \neq 0$, тогда, умножая второе уравнение исходной системы на -a, получаем систему

$$\begin{cases} ax + a^2y = 1 \\ -ax - a(a-1)y = -a^2. \end{cases}$$
 (*)

Заменяя второе уравнение системы (*) суммой ее первого и второго уравнений, получим систему, равносильную исходной:

 $\left\{ egin{array}{ll} ax+a^2y=1 \ ay=1-a^2 \end{array}
ight.$ Из второго уравнения находим $y=rac{1-a^2}{a}$ и, подставляя это значение в первое уравнение системы (**), получим

$$x = \frac{1 - a^2 y}{a} = \frac{1 - a + a^3}{a}$$
.

Ответ. При a=0 решений нет; при $a \neq 0$ система имеет решение

$$x = \frac{1-a+a^3}{a}y = \frac{1-a^2}{a}$$
.

Пример 3. Найти все значения параметра a, для каждого и которых числа x и y, удовлетворяющие системе уравнений

$$\begin{cases} x+y=a \\ 2x-y=3 \end{cases}$$

удовлетворяют также неравенству x > y,

 \triangle Сложим уравнения системы и получим уравнения $3x = a + 3 \Rightarrow x = \frac{a+3}{3}$; подставим это значение в первое уравнение

$$\frac{a+3}{3} + y = a$$
, $y = \frac{2a+3}{2}$.

Теперь решим неравенство x>y, т. е. $\frac{a+3}{3}>\frac{2a-3}{3}>3a+$ $+9>6a-9\Rightarrow>18>3a$; a<9.

Ответ: а<9. ▲

метод определителей

Справочный материал

Запишем таблицу, составленную из коэффициентов при не-известных в системе (1),

$$A = \begin{pmatrix} a_1b_1 \\ a_2b_2 \end{pmatrix}$$
, называемую основной матрицей системы, таблицу $B_x = \begin{pmatrix} c_1b_1 \\ c_2b_2 \end{pmatrix}$ и таблицу $B_y = \begin{pmatrix} a_1c_1 \\ a_2c_2 \end{pmatrix}$ по переменной x и y соответственно.

Габлицы B_x и B_y составляются соответствующей заменой коэффициентов a и b на коэффициенты c.

Если матрица содержит n строк и m столбцов, то говорят, что она имеет размерность $n \times m$. Если n = m, то матрица называется квадратной.

Число строк (а следовательно, и число столбцов квадрат-

ной матрицы) называется порядком матрицы.

Для квадратной матрицы вводится понятие определитель матрицы, обозначаемый символом $\det A$, $\det B_x$, $\det B_y$.

Определителем матрицы 2-го порядка $A = \begin{pmatrix} a_1b_1 \\ a_2b_2 \end{pmatrix}$ называется число, вычисляемое по следующему правилу:

$$\det A = a_1 b_2 - a_2 b_2, \ \det B_x = c_1 b_2 - b_1 c_2, \ \det B_y = a_1 c_2 - c_1 a_2.$$

Для решения системы из двух по два необходимо составить три матрицы: A, B_x , B_y . Находим определители матрицы: $\det A$, $\det B_x$ и $\det B_y$.

Для того чтобы система имела единственное решение, необходимо и достаточно, чтобы $\det A$ был отличен от нуля. В этом случае решение находится по формулам:

$$x = \frac{\det B_x}{\det A}; \quad y = \frac{\det B_y}{\det A}.$$

Эти формулы называются формулами Крамера.

Если a_1 , b_4 , a_2 , b_2 отличны от нуля, то условие $\det A \neq 0$ эквивалентно условию

$$\frac{a_1}{a_2} = \frac{b_1}{b_2}.$$

Для того чтобы система не имела решений, необходимо и достаточно, чтобы $\det A=0$ и хотя бы один из определителей $\det B_x$ или $\det B_y$ был отличен от нуля.

Если a_1 , b_1 , a_2 , b_2 отличны от нуля, то условие $\det A=0$, $\det B_x\neq 0$ ($\det A=0$, $\det B_y\neq 0$) эквивалентно условию $\frac{a_1}{a_2}-\frac{b_1}{b_2}=\frac{c_1}{c_2}$.

Для того чтобы система имела бесконечно много решений, необходимо и достаточно, чтобы $\det A = \det B_x = \det B_y = 0$. Если коэффициенты a_1, a_2, b_1, b_2 отличны от нуля, то условие $\det A = \det B_x = \det B_y = 0$ эквивалентно условию $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

с учетом ограничений коэффициентов системы (1).

Примеры с решениями

Пример 4. Найти все значения a, при которых система

$$\begin{cases} 3x + 7y = 20 \\ ax + 14y = 15 \end{cases}$$
 имеет единственное решение.

 \triangle Система имеет решение, если $\det A \neq 0$, т. е.

$$\begin{vmatrix} 3 & 7 \\ a & 14 \end{vmatrix} = 3 \cdot 14 - a \cdot 7 \neq 0, \quad a \neq 6. \quad \blacktriangle$$

Ответ: при $a \neq 6$.

Пример 5. Найти все a, для которых система $\begin{cases} ax - 8y = 12 \\ 2x - 6y = 15 \end{cases}$ не имеет решений.

 \triangle Поскольку $\det B_x = \begin{vmatrix} 12 & -8 \\ 15 & -6 \end{vmatrix} \neq 0$, то система не имеет решений, если $\det A = \begin{vmatrix} a & -8 \\ 2 & -6 \end{vmatrix} = -a6 + 16 = 0 \Rightarrow a = \frac{8}{3}$.

Ответ: $a = \frac{8}{3}$. \blacktriangle

Пример 6. Найти все a, при которых система 15x + a = 3 имеет бесконечно много решений.

 \triangle Поскольку $15^2 + a^2 \neq 0$, $5^2 + 10^2 \neq 0$ и

 $\det B_y = \begin{vmatrix} 15 & 3 \\ 5 & 1 \end{vmatrix} = 0$, то данная система имеет бесконечно много решений при $\det A = \begin{vmatrix} 15 & a \\ 5 & 10 \end{vmatrix} = 150 - 5a = 0$ и $\det B_x = \begin{vmatrix} 3 & a \\ 1 & 1a \end{vmatrix} = 30 - a = 0$, т. е. при a = 30.

Пример 7. Для каждого a решить систему

$$\begin{cases} ax + y = a^2 \\ x + ay = 1. \end{cases}$$

 \triangle Находим $\det = \begin{vmatrix} a & 1 \\ 1 & a \end{vmatrix} = a^2 - 1;$ $\det B_x = \begin{vmatrix} a^2 & 1 \\ 1 & a \end{vmatrix} = a^3 - 1;$ $\det B_y = \begin{vmatrix} a & a^2 \\ 1 & 1 \end{vmatrix} = a - a^2.$

При $a \neq \pm 1$ имеет $\det A \neq 0$ и система имеет единственное решение

$$x = \frac{\det B_x}{\det A} = \frac{a^3 - 1}{a^2 - 1} = \frac{a^2 + a + 1}{a + 1}; \ \ y = \frac{\det B_y}{\det A} = \frac{a - a^2}{a^2 - 1} = \frac{-a}{a + 1}.$$

При a=1 имеем $\det A = \det B_x = \det B_y = 0$, тогда

$$\begin{cases} x+y=1 \\ x+y=1 \end{cases}$$
 и $x=t$ $y=1-t$, где $t \in \mathbb{R}$.

ÿ:

При a=-1 $\det A=0$, $\det By\neq 0$, следовательно, система решений не имеет.

Ответ: при $a \in]-\infty; -1[\cup]-1; 1[\cup]1; +\infty[$ единственное решение

$$x = \frac{a^2 + a + 1}{a + 1}, y = \frac{a}{a + 1};$$

при a = 1 — бесчисленное множество решений; при a = -1 — система решений не имеет. \blacktriangle

Упражнения

1. Найти все значения а, при которых решения системы

$$\begin{cases} 3x - 6y = 1 \\ 5x - ay = 2 \end{cases}$$

удовлетворяют условию x < 0 и y < 0.

Ответ: 10 < a < 12.

2. Найти все значения параметра a, для каждого из которых числа x и y, удовлетворяющие системе

$$\begin{cases} x+y=a \\ 2x-y=3, \end{cases}$$

удовлетворяют также неравенству x > y.

Ответ: a < 6.

3. Найти все значения b, для каждого из которых числа x и y, удовлетворяющие системе уравнений

$$\begin{cases} 2x + y = b + 2 \\ x - y = b, \end{cases}$$

удовлетворяют также неравенству x-y < 2.

Ответ: b < 0.

4. Найти все значения c, для каждого из которых числа x и y, удовлетворяющие системе уравнений

$$\begin{cases} x + 7y = c \\ 2x - y = 5, \end{cases}$$

удовлетворяют также неравенству x > y - 2.

Ответ: c < 70.

5. Найти все значения a, для каждого из которых, числа x и y, удовлетворяющие системе уравнений

$$\begin{cases} x-2y=2a \\ 3x+5y=4 \end{cases}$$
 удовлетворяют также неравенству $x+y>0$.

Ответ: a > -3.

6. Найти все значения b, для каждого из которых числа xи и, удовлетворяющие системе уравнений

$$\begin{cases} 3x + y = b \\ x + 2y = 2b + 1, \end{cases}$$

удовлетворяют также неравенству x > 3y.

Ответ: $b < -\frac{2}{3}$.

7. Найти все значения a, при которых система имеет единственное решение:

1)
$$\begin{cases} 3x - 2y = 6 \\ ax + y = -3, \end{cases}$$
 2)
$$\begin{cases} ax + ay = a^2 \\ x + ay = 2, \end{cases}$$
 3)
$$\begin{cases} x - (a+1)y = a+2 \\ ax + y = a-3, \end{cases}$$
 4)
$$\begin{cases} 2x - 3 = 0 \\ ax + y(a-1) = \frac{3}{2}. \end{cases}$$

Ответы: 1) $a \in \mathbb{R} \setminus \left\{ -\frac{3}{2} \right\}$; 2) $a \in \mathbb{R} \{0; 1\}$; 3) $a \in \mathbb{R}$;

- 4) $a \in |\mathbb{R} \setminus \{1\}$.
- 8. Найти все значения *а*, при которых система и**м**еет бесконечно много решений

1)
$$\begin{cases} 3x + ay = 3 \\ ax + 3y = 3, \end{cases}$$
 2)
$$\begin{cases} 2x + ay = a + 2 \\ (a+1)x + 2ay = 2a + 4, \end{cases}$$

1)
$$\begin{cases} 3x + ay = 3 \\ ax + 3y = 3, \end{cases}$$
 2)
$$\begin{cases} 2x + ay = a + 2 \\ (a+1)x + 2ay = 2a + 4, \end{cases}$$
 3)
$$\begin{cases} (a+1)x + 8y = 4a \\ ax + (a+3)y = 3a - 1, \end{cases}$$
 4)
$$\begin{cases} x + 2ay = 1 \\ (a-1)x + 4y = 2a - 3, \end{cases}$$
 5)
$$\begin{cases} 3x + (a-3)y = 4 \\ 6x + (a-1)y = a + 3. \end{cases}$$

1) a=1; 2) a=1; 3) a=1; 4) a=2;

- 5) a = 5.
- 9. Найти все значения параметра а, при которых система не имеет решений.

1)
$$\begin{cases} -4x + ay = 1 + a \\ (6+a)x + 2y = 3 + a, \end{cases}$$
 2)
$$\begin{cases} a^2x + (2-a)y = 4 + a^2 \\ ax + (2a-1)y = a^5 - 2, \end{cases}$$

3)
$$\begin{cases} x + ay = 1 \\ ax - 3ay = 2a + 3, \end{cases}$$
 4) $\begin{cases} 2x + a^2y = a^2 + a - 2 \\ x + 2y = 2, \end{cases}$

Ответы: 1) a = -4; 2) a = -1, a = 1; 3) a = 0; 4) a = -2; 5) a = 0, a = -2.

10. При всех значениях параметра a решить систему.

1)
$$\begin{cases} ax + y = a \\ x + ay = 1, \end{cases}$$
 2) $\begin{cases} a^2x + y = a^2 \\ x + ay = 1, \end{cases}$ 3) $\begin{cases} ax + y = 2 \\ x + ay = 1, \end{cases}$

4)
$$\begin{cases} ax + y = a \\ ax + ay = 1, \end{cases}$$
 5)
$$\begin{cases} 2x - ay = 5 \\ 3y - 6x = -15, \end{cases}$$
 6)
$$\begin{cases} x + ay = 1 \\ ax + y = 2a, \end{cases}$$
 7)
$$\begin{cases} (2a + 4)x - (5a + 3)y = 2a - 4 \\ (a + 2)x - 3ay = a - 2, \end{cases}$$
 8)
$$\begin{cases} ax + y = a^{3} \\ x + ay = 1. \end{cases}$$

Ответы: 1) (1:0) при $a \in \mathbb{R} \setminus \{-1; 1\}$; (t; 1-t) при a=1 и (t; t+1) при a=-1, где $t \in \mathbb{R}$;

2) (1:0) при $a \in \mathbb{R} \setminus (13)$ (t; 1-t) при a=1, где $t \in \mathbb{R}$;

3)
$$\left(\frac{2a-1}{a^2-1}; \frac{a-2}{a^2-1}\right)$$
 при $a \in \mathbb{R} \setminus \{-1; 1\}$; нет решений при $a=-1$ и $a=1$;

- 4) $\left(\frac{a+1}{a}; -1\right)$ при $a \in \mathbb{R} \setminus \{0; 1\}; (t; 1-t)$ при a = 1, где $t \in \mathbb{R}$; нет решений при a = 0;
 - 5) (5/2; 0) при $a \in \mathbb{R} \setminus \{1\}$; $\{t; 2t-5\}$ при a = 1, где $t \in \mathbb{R}$;
- 6) $\left(\frac{1-2a^2}{1-a^2}; \frac{a}{1-a^2}\right)$ при $a \in \mathbb{R} \setminus \{-1; 1\}$; нет решений при a = -1, и a = 1;
- 7) $\left(\frac{a-2}{a+2};0\right)$ при $a \in \mathbb{R} \setminus \{-2; 3\}; \left(t; \frac{5t-1}{9}\right)$ при a=3, где $t \in \mathbb{R}$; нет решений при a=-2;
- 8) $(a^2+1; -a)$ при $a \in \mathbb{R} \setminus \{-1; 1\}$; при a=1 (t; 1-t) и при a=-1 (t; t-1), где $t \in \mathbb{R}$.
- 11. Найти все значения a, при которых прямые 3x + 2ay = 1 и 3(a-1)x ay = 1: а) пересекаются в одной точке; б) совпадают; в) не имеют общих точек.

Ответы: a) $a \in \mathbb{R} \setminus \{0; 1/2\}; 6$ Ø; в) a = 0; a = 1/2.

12. Найти все значения параметра а, для которых решения системы

$$\begin{cases} x + ay = 13 \\ ax + 4y = 6 \end{cases}$$

удовлетворяют условию x > 1, y > 0.

Ответ: $a \in]-2; 2[\cup]2; +\infty[.$

13. При всех значениях параметра а решить систему:

1)
$$\begin{cases} 2x+3y=5 \\ x-y=2 \\ x+4y=a, \end{cases}$$
 2)
$$\begin{cases} x+2y=3 \\ ax-4y=-6 \\ x+y=1. \end{cases}$$

Ответы: 1) (11/5; 1/5) при a=3; нет решений при $a \neq 3$;

2) (-1, 2) при a = -2; нет решений при $a \neq -2$.

14. При каких целых значениях п решение системы

$$\begin{cases} nx - y = 5 \\ 2x + 3ny = 0 \end{cases}$$
 удовлетворяет условиям $x > 0$, $y < 0$?

Ответ: {0; 1}.

РЕШЕНИЕ ЛИНЕЙНЫХ СИСТЕМ С МОДУЛЕМ

Примеры с решениями:

Пример 15. При всех значениях параметра a решить систему:

$$\begin{cases} |a|x-y=1\\ x+|a|y=a. \end{cases}$$
 Если $a=0$ $\begin{cases} 0x-y=1\\ x+0=0, \end{cases}$ $x=0.$

Пусть a > 0, тогда исходная система равносильна системе

$$\det A = \begin{vmatrix} a & -1 \\ 1 & |a| \end{vmatrix} = a^2 + 1,$$

$$\begin{cases} ax - y = 1 \\ x + ay = a, \end{cases} \det Bx = \begin{vmatrix} 1 & -1 \\ a & |a| \end{vmatrix} = a + a = 2a,$$

$$\det By = \begin{vmatrix} |a| & 1 \\ 1 & a \end{vmatrix} = a^2 - 1.$$

Система имеет единственное решение (т. к. $a^2+1 \neq 0$ ни при каких a) $x=\frac{2}{a^2+1}$, $y=\frac{a^2-1}{a^2+1}$.

Пусть a < 0. Тогда исходная система равносильна системе

$$\det A = \begin{vmatrix} -a & -1 \\ 1 & -a \end{vmatrix} = a^{2} + 1,$$

$$\begin{cases} -ax - y = 1 \\ x - ay = a, \end{vmatrix} \det Bx = \begin{vmatrix} 1 & -1 \\ a & -a \end{vmatrix} = -a + a = 0,$$

$$\det By = \begin{vmatrix} -a & 1 \\ 1 & a \end{vmatrix} = -a^{2} - 1 = -(a^{2} + 1).$$

Единственное решение

$$x = \frac{0}{a^2 + 1} = 0, \quad y = \frac{-(a^2 + 1)}{a^2 + 1} = -1.$$

Ответ: при a>0 $x=\frac{2a}{a^2+1}$, $y=\frac{a^2-1}{a^2+1}$, при $a\leqslant 0$ x=0, y=-1.

Пример 16. При всех значениях параметра а решить систему

$$\begin{cases} x+y=1 \\ a|x|-y=1 \end{cases} \Rightarrow x \geqslant 0 \begin{cases} x+y=1 \\ ax-y=1, \end{cases}$$

$$\det A = \begin{vmatrix} 1 & 1 \\ a & -1 \end{vmatrix} = -1-a,$$

$$\det B_x = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -1-1 = -2,$$

$$\det B_y = \begin{vmatrix} 1 & 1 \\ a & 1 \end{vmatrix} = 1-a.$$

Единственное решение:

$$x = \frac{-2}{-(a+1)} = \frac{2}{a+1}; \quad y = \frac{1-a}{-(a+1)} \text{ при } a \neq -1$$
 и $\frac{2}{a+1} \geqslant 0 \Rightarrow a \geqslant -1$ (при $a > -1$ $x = \frac{2}{a+1}, y = \frac{a-1}{a+1}$).

Нет решений: $\det A = -1 - a = 0 \Rightarrow a = -1$. Бесчисленного множества решений нет, т. к. $\det B_x = -2$.

$$\det A = \begin{vmatrix} 1 & 1 \\ -a & -1 \end{vmatrix} = -1 + a,$$

$$x < 0 \begin{cases} x + y = 1 \\ -ax - y = 1, \end{cases} \quad \det B_x = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -1 - 1 = -2$$

$$\det B_y = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1 + a.$$

Единственное решение: $x = \frac{-2}{a-1}$, $y = \frac{a+1}{a-1}$

при
$$\frac{-2}{a-1} < 0 \Rightarrow a-1 > 0, \ a > 1.$$

Бесчисленного множества решений нет, т. к. $\det B_x = -2 \neq 0$. Ответ: При $a \leqslant -1$ нет решений, при $-1 < a \leqslant 1$

$$\left\{\frac{2}{a+1}; \frac{a-1}{a+1}\right\}; \text{ при } a > 1 \left\{\frac{2}{a+1}; \frac{a-1}{a+1}\right\} \text{ и } \left\{\frac{2}{1-a}; \frac{a+1}{a-1}\right\}.$$

Графическая иллюстрация этого решения показана на рис. 31. На рис. 31 построены графики линий y+x=1 и y=a|x|-1 при некоторых фиксированных значениях a, при a=1, a=0, a=-1, a=2; A, B и C— точки пересечения линий, τ . ϵ . решения системы.

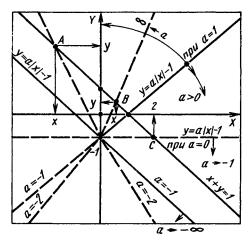


Рис. 31

Пример 17. При всех значениях параметров a и b решить систему

$$\begin{cases} ax + y = b \\ x - y = 2. \end{cases}$$

△ Вычислим три определителя

$$\det A = \begin{vmatrix} a & 1 \\ 1 & -1 \end{vmatrix} = -(a+1); \qquad \det B_x = \begin{vmatrix} b & 1 \\ 2 & -1 \end{vmatrix} = -(b+2); \\ \det B_y = \begin{vmatrix} a & b \\ 1 & 2 \end{vmatrix} = 2a - b.$$

Находим единственное решение

$$x = \frac{-(b+2)}{-(a+1)} = \frac{b+2}{a+1}; \quad y = \frac{2a-b}{-(a+1)} = \frac{b-2a}{a+1}$$
 при $a \neq -1$.

Бесчисленное множество решений, если $\det A = \det B_x = \det B_y = 0$, т. е. $-(a+1)=0 \Rightarrow a=-1$, -(b+2)=0, b=-2, 2a-b=0

при
$$a = -1$$
 и $b = -2$ $\begin{cases} x - y = 2 \\ x - y = 2 \end{cases}$ $x = t$, $y = t - 2$, $t \in \mathbb{R}$.

Нет решений при -(a+1)=0, т. е. при a=-1, при этом хотя бы один из оставшихся определителей не равнялся бы нулю. Это возможно при $b\neq -2$.

Ответ: $\left(\frac{b+2}{a+1}; \frac{b-2a}{a+1}\right)$ при $a \neq -1; b \in \mathbb{R}$ (t; t-2) при a = -1 и b = -2; нет решений при a = -1 и $b \in \mathbb{R} \setminus \{-2\}$.

Пример 18. Найти числа a, b, c, если система

 $\begin{cases} 5x + 7y = 15 \\ ax + bx = c \end{cases}$ имеет единственное решение, а уравнение ax + bx = c имеет решение x = 2, y = 3.

 \triangle Вычислим определители. $\det A = \begin{bmatrix} 5 & 7 \\ a & 7 \end{bmatrix} = 5b - 7a$.

$$\det B_x = \begin{vmatrix} 15 & 7 \\ c & b \end{vmatrix} = 15b - 7c; \quad \det B_y = \begin{vmatrix} 5 & 15 \\ a & c \end{vmatrix} = 5c - 15a.$$

Вычислим корни системы $x = \frac{15b - 7c}{5b - 7a}$; $y = \frac{5c - 15a}{5b - 7a}$ и подставим их в 1-е уравнение системы:

$$5\frac{15b-7c}{5b-7a} + 7\frac{5c-15b}{5b-7a} = 15 \Rightarrow 75b-35c+35c-105a = 75b-105a \Rightarrow 0 = 0,$$

т. е. не зависит от параметров, кроме $5b-a\neq 0$, если a=t, где $t\in \mathbb{R}$, то $5b-7t\neq 0$ $b\neq \frac{7t}{5}$, тогда b=p, а $p\in \mathbb{R}\setminus \{7t/5\}$.

Из
$$2a + 3b + c \Rightarrow c = 2t + 3p$$
.

Ответ:
$$a = t$$
, $b = p$, $c = 2t + 3p$, где $t \in \mathbb{R}$, $p \in \mathbb{R} \setminus \left\{ \frac{7t}{5} \right\}$.

Пример 19. Найти все значения параметра a такие, что длу любого значения b найдется хотя бы одно значение c, при кото ром система уравнений имеет хотя бы одно решение.

$$\begin{cases} 2x + by = ac^2 + c \\ bx + 2y = c - 1. \end{cases}$$

△ Вычислим три определителя:

$$\det A = \begin{vmatrix} 2 & b \\ b & 2 \end{vmatrix} = 4 - b^2; \quad \det B_x \begin{vmatrix} ac^2 + c & b \\ c - 1 & 2 \end{vmatrix} = 2ac^2 + 2c - bc + b;$$

$$\det B_y = \begin{vmatrix} 2 & ac^2 + c \\ b & c - 1 \end{vmatrix} = 2c - 2 - abc^2 - bc.$$

При $b \neq \pm 2$ система имеет единственное решение, не зависящее от a и c, τ . е. a, $c \in \mathbb{R}$. Но в задаче требуется найти хотя бы одно решение для любого b. При $b=\pm 2$ система может иметь бесчисленное множество решений при условии, что все три определителя равны нулю. Первый определитель равен нулю при $b=\pm 2$. Найдем при каких a другие два определителя равны нулю сначала при b=2, затем при b=-2. При b=2

$$\begin{cases} 2ac^2 + 2c - 2c + 2 = 0 \Rightarrow ac^2 + 1 = 0 \Rightarrow ac^2 = -1. \\ 2c - 2 - 2ac^2 - 2c = 0 \end{cases}$$

Это возможно только при a < 0 и $c = \frac{1}{\sqrt{-a}}$.

При
$$b = -2$$
 $\begin{cases} 2ac^2 + 2c + 2c - 2 = 0 \\ 2c - 2 + 2ac^2 + 2c = 0 \end{cases} \Rightarrow ac^2 + 2c - 1 = 0.$

Определим, как зависят корни этого урвнения от а:

 $c_{1,2} = \frac{-1 \pm \sqrt{1+a}}{a}$, корни возможны, но при $1+a \geqslant 0$, т. е. при $-1 \leqslant a$. При этом найдется хотя бы одно значение c. Находим пересечение множеств a < 0 и $-1 \leqslant a -$ это $-1 \leqslant a < 0$.

Ответ: $-1 \le a < 0$. ▲

Второе решение.

1) Преобразуем систему к виду
$$\left\{ \begin{array}{l} y = -\frac{2}{b}x + \frac{ac^2 + c}{b} \\ y = -\frac{b}{2}x + \frac{c-1}{2}. \end{array} \right.$$

Система будет иметь единственное решение при $-\frac{2}{b} \neq -\frac{b}{2}$, т. е. при $b \neq \pm 2$ независимо от a, b и c. Система будет иметь бесчисленное множество решений, если $b = \pm 2$ и $\frac{ac^2+c}{b} = \frac{c-1}{2}$ при

этих b. Решая последнее уравнение при b=2, получаем ac=-1при a < 0 и при $b = -2 ac^2 + 2c - 1 = 0$.

Упражнения

1. При всех значениях a решить систему:

1)
$$\begin{cases} ax + y = |a| \\ ax + ay = a^2, \end{cases}$$
 2)
$$\begin{cases} |a|x + a^2y = a \\ ax - a^2y = a^2, \end{cases}$$

3)
$$\begin{cases} a|x+y|=1\\ |x|+|y|=1, \end{cases}$$
 4) $\begin{cases} a|x|-y=a\\ |x|+ay=1, \end{cases}$

1)
$$\begin{cases} ax + y = |a| \\ ax + ay = a^{2}, \end{cases}$$
 2)
$$\begin{cases} |a|x + a^{2}y = a \\ ax - a^{2}y = a^{2}, \end{cases}$$
 3)
$$\begin{cases} a|x + y| = 1 \\ |x| + |y| = 1, \end{cases}$$
 4)
$$\begin{cases} a|x| - y = a \\ |x| + ay = 1, \end{cases}$$
 5)
$$\begin{cases} ax - |x| + y = 1 \\ x + ay = 1, \end{cases}$$
 6)
$$\begin{cases} a|x + y| = a \\ x + y = a, \end{cases}$$
 7)
$$\begin{cases} |ax - y| = 1 \\ x + y = 2. \end{cases}$$

Ответы: 1) (0; a) при $a \in (0; 1) \cup (1; +\infty); \left(\frac{-2a^2}{a^2-1}; \frac{a^3+a}{a^2-1}\right)$ при $a \in (-\infty; -1) \cup (-1; 0); (t; 1-t)$ при a=1, где $t \in \mathbb{R}$. Нет решений при a = -1;

2)
$$\left(\frac{a+1}{2}; \frac{1-a}{2a}\right)$$
 при $a \in (0; +\infty); (t; p)$ при $a = 0$ и $(t; p)$

-1 — t) при a=-1, где $t\in\mathbb{R}$, $p\in\mathbb{R}$; нет решений при $a\in[-\infty]$; -1 [U]-1: 0[;

3) нет решений при $a \in (-\infty; 1); (t; 1-t)$ и (-t; t-1) при

, где
$$t\in[0;\ 1];\left(\frac{a+1}{2a};\,\frac{1-a}{2a}\right),\left(\frac{1-a}{2a};\,\frac{a+1}{2a}\right),\left(\frac{-(a+1)}{2a};\,\frac{a-1}{2a}\right)$$
 и $\left(\frac{a-1}{2a};\,\frac{-(a+1)}{2a}\right)$ при $a\in(1;\,+\infty);$

4) (1:0), (—1, 0) при $a \in \mathbb{R}$;

5)
$$\left(\frac{a-1}{a^2+a-1}; \frac{a}{a^2+a-1}\right)$$
 при $a \in \left(-\infty; \frac{-1-\sqrt{5}}{2}\right); \left(\frac{a-2}{a^2-a-1}; \frac{a-1}{a^2-a-1}; \frac{a-1}{a^2-a-1}$

$$\frac{a-2}{a^2-a-1}$$

при
$$a\in\left(\frac{1-\sqrt{5}}{2}\,;\,\frac{\sqrt{5}-1}{2}\right)\,;\,\,\,\left(\frac{a-1}{a^2-a-1}\,;\,\frac{a-2}{a^2-a-1}\right)$$
 и $\left(\frac{a-1}{a^2+a-1}\,;\,\frac{a}{a^2+a-1}\right)$ при $a\in\left(\frac{\sqrt{5}-1}{2}\,;\,1\right)\,;\,\,\,(0;\,\,1)$ при $a=1\,;\,\,\left(\frac{a-1}{a^2-a-1}\,;\,\frac{a-2}{a^2-a-1}\right)$ при $a\in\left(\frac{1+\sqrt{5}}{2}\,;\,\,+\infty\right)$; нет решений при

$$a \in \left[\frac{-1-\sqrt{5}}{2}; \frac{1-\sqrt{5}}{2}\right] \cup \left[1; \frac{1+\sqrt{5}}{2}\right];$$

6) (t;-t) при a=0;(t;1-t) при a=1;(t;-t-1) при a=-1, где $t\in \mathbb{R}$: нет решений при $a\in (-\infty;-1)\cup (-1;0)\cup (0;1)\cup (1;+\infty);$

7)
$$\left(\frac{3}{a+1}; \frac{2a-1}{a+1}\right)$$
 и $\left(\frac{1}{a+1}; \frac{2a+1}{a+1}\right)$ при $a \in]-\infty; -1) \cup \cup (-1; +\infty[;$ нет решений при $a=-1$.

2. При всех значениях параметров а и в решить систему:

2. The Beex shadehugk napametros
$$a$$
 is by pelliums
$$\begin{cases} x - yb = a \\ ax + y = 1, \end{cases} 2) \begin{cases} x + y = b \\ ax - y = a, \end{cases} 3) \begin{cases} ax + by = a \\ ax + by = b, \end{cases}$$

$$\begin{cases} ax - ay = ab \\ 2ax - y = a, \end{cases} 5) \begin{cases} ax = ab \\ yb = b^2, \end{cases} 6) \begin{cases} a^2x = ab \\ abx = b^2, \end{cases}$$

$$\begin{cases} ax + ay = b \\ bx + by = a. \end{cases}$$

4)
$$\begin{cases} ax - ay = ab \\ 2ax - y = a, \end{cases}$$
 5)
$$\begin{cases} ax = ab \\ yb = b^2, \end{cases}$$
 6)
$$\begin{cases} a^2x = ab \\ abx = b^2, \end{cases}$$

Ответы: 1) $\left(\frac{a+b}{ab+1}; \frac{1-a^2}{ab+1}\right)$ при $ab \neq -1; (t; 1-t)$ при a=1,b=-1, $(t;\ t-1)$ при $a=-1;\ b=1$, где $t\in \mathbb{R};$ нет решений при $ab = -1, a \neq 1, a \neq -1;$

2) $\left(\frac{a+b}{a+1}; \frac{ab-a}{a+1}\right)$ при $a \neq -1$; (t; 1-t) при a = -1, b = 1, где $t \in \mathbb{R}$:

нет решений при a = -1. $b \neq 1$;

- 3) (t; 1-t) при $a=b\neq 0$, где $t\in \mathbb{R}$; (t; p) при a=0, b=0, где t, $p \in \mathbb{R}$ нет решений при $a \neq b$;
- 4) $\left(\frac{a-b}{2a-1}; \frac{a-2ab}{2a-1}\right)$ при $a \neq 0$ и $a \neq 1/2;$ (t; 0) при a = 0, $b \in \mathbb{R}$ и (t; t-1/2) при a=1/2, b=1/2, где $t \in \mathbb{R}$; нег решений при $a=1/2, b \neq 1/2$;
- 5) (t; b) при a=0 и $b \neq 0$, где $t \in \mathbb{R}$; (b; b) при $ab \neq 0$; (0; t)при $a \neq 0$ и b = 0, где $t \in \mathbb{R}$; (t; p) при a = 0 и b = 0, где $t, p \in \mathbb{R}$;
- 6) x=b/a при $ab \neq 0$; x=0 при b=0 и $0 \neq 0$; x=t при a=0и b=0, где $l \in \mathbb{R}$; нет решений при a=0 и $b \neq 0$;
- 7) (t; 1-t) при $a=b \neq 0$, где $t \in \mathbb{R}$; (t; p) при a=0 и b=0, где t, $p \in \mathbb{R}$; нет решений: при a = 0 и $b \neq 0$, при $a \neq 0$ и b = 0

и при $ab \neq 0$ и $a \neq b$. 3. Система $\{5x + 7y = 15$ решений не имеет, а уравнение ax + 1

+by=c имеет решение x=4, y=1. Найти числа a, b, c.

Ответ: a = 5t, b = 7t, c = 27t, где $t \in \mathbb{R} \setminus \{0\}$.

4. Найти все значения параметра а такие, что для любого значения b найдется хотя бы одно значение c, при котором система уравнений имеет хотя бы одно решение.

1)
$$\begin{array}{ccc} x + by = ac^2 + c \\ bx + 2y = c - 1, \end{array}$$
 2) $\begin{array}{ccc} 2x + by = c^2 \\ bx + 2y = ac - 1, \end{array}$

 $bx + y = ac^2$ x + bu = ac + 1

Ответы: 1) $-(3\sqrt{2}+4)/8 \le a \le (3\sqrt{2}-4)/8$; 2) $a \in (-\infty; -2] \cup [2; +\infty); 3)$ $a \in (-\infty; -4] \cup [4; +\infty[.$ Найти все a и b, при которых система

$$ax - by = a^2 - b$$

 $bx - b^2y = 2 + 4$ имеет бесконечно много решений.

Ответ: a=1, b=-1; a=1, b=-2.

5) Система $\begin{cases} ax - by = 2a - b \\ (c+1)x + cy = 10 - a + 3b \end{cases}$ имеет бесконечно много решений; x=1, y=3 — одно из них. Найти числа a, b, c.

Other: a=0, b=0, c=9/4; a=2, b=-1, c=1.

6. Найти все значения параметров а и b, при которых найдется хотя бы одно с и при которых система уравнений имеет бесчисленное множество решений:

1)
$$2x + by = ac^{2} + c$$

 $bx + 2y = c - 1$, 2) $x - by + ac^{2} + c$
 $bx + 2y = c - 1$, 3) $2x + by = c^{2}$
 $bx + 2y = ac - 1$, 4) $bx + y = ac^{2}$
 $x + by = ac + 1$.

3)
$$2x + by = c^2$$
 $bx + 2y = ac - 1$, $bx + y = ac^2$ $x + by = ac + 1$.

Ответы: 1) $a \in [-1; 0[, b = \pm 2;$

- 2) $-(3\sqrt{2}+4)/8 \le a \le (3\sqrt{2}-4)/8, \ b=\pm\sqrt{2};$
- 3) $a \in (-\infty; -2] \cup [2; +\infty), b = \pm 2;$
- 4) $a \in (-\infty; -4] \cup [4; +\infty[, b=\pm 1.$
- 7. Найти все значения параметра \overline{b} , при каждом из которых система уравнений

$$\begin{cases} bx + 2y = b + 2 \\ 2bx + (b+1)y = 2b + 4 \end{cases}$$

имеет хотя бы одно решение.

Ответ: $b \in \mathbb{R} \setminus \{0\}$.

8. Найти все значения параметра а, при каждом из которых система уравнений

$$\begin{cases} 2x + (9a^2 - 2)y = 6a - 2\\ x + y = 1 \end{cases}$$

не имеет ни одного решения.

Ответ: a = -2/3.

9. Найти все значения параметра c, при каждом из которых система уравнений

$$\left\{ egin{array}{l} -4x+cy=1+c \ (6+c)x+2y=3+c \end{array}
ight.$$
 не имеет ни одного решения.

Ответ: c = -4.

10. Найти все значения параметра d, при каждом из которых система уравнений

$$\left\{ egin{aligned} (2-d)\,x + d^2y = 3d^2 + 2 \ (2d-1)\,x + dy = d-1 \end{aligned}
ight.$$
 имеет хотя бы одно решение.

Ответ: $d \in \mathbb{R} \setminus \{-1\}$.

РЕШЕНИЕ НЕЛИНЕЙНЫХ СИСТЕМ Примеры с решениями:

Пример 1. Найти все значения параметра a, при которых система уравнений

$$\begin{cases} x^2 - y + 1 = 0 \\ x^2 - y^2 + (a+1)x + (a-1)y + a = 0 \end{cases}$$

имеет решение.

 \triangle Левую часть второго уравнения системы можно разложить на множители, линейные относительно x и y. Собирая слагаемые, содержащие a, получим

$$(x^2 - y^2 + x - y) + a(x + y + 1) = 0 \Rightarrow (x - y)(x + y + 1) + a(x + y + 1) = 0 \Rightarrow (x + y + 1)(x - y + a) = 0.$$

Это уравнение равносильно совокупности уравнений

$$\begin{bmatrix} x+y+1=0\\ x-y+a=0, \end{bmatrix}$$

тогда данную систему можно представить как совокупность двух систем

$$\begin{cases} y = x^2 + 1 \\ x + y + 1 = 0 \end{cases} \text{ или } \begin{cases} y = x^2 + 1 \\ x - y + a = 0. \end{cases}$$

Геометрическая иллюстрация систем представлена на рис. 32. Видно, что прямая x+y=1 и парабола не пересекаются, т. е. система не имеет решений. Это же показывает и решение системы. Исключая переменную y из первой системы, получаем уравнение $x^2+x+2=0$, которое решений не имеет.

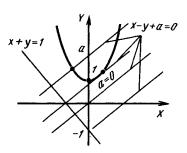


Рис. 32

При увеличении параметра a вторая прямая смещается вверх, при уменьшении a — вниз. Решение возможно, когда прямая x-y+a=0 касается или пересекает параболу. Решая последнюю систему заменой переменной, получаем уравнение $x^2-x+1-a=0$, которое имеет решение если $D=4a-3\geqslant 0$, т. е. при

 $a \geqslant 3/4$. Очевидно, что при a = 3/4 прямая y = x + 3/4 касается параболы $y = x^2 + 1$, а при a > 3/4 пересекает ее в двух точках, при a < 3/4 эти линии общих точек не имеют. \blacktriangle

Пример 2. Найдите все значения параметра a, при которых система уравнений

$$\begin{cases} x - a = 2\sqrt{y} \\ y^2 - x^2 + 2x + 8y + 15 = 0 \end{cases}$$

имеет решение.

 \triangle Упростим второе уравнение системы, разложив его левую часть на множители $(y^2+8y+4)-(x^2-2x+1)=0$. ⇒ ⇒ $(y+4)^2-(x-1)^2=0$ ⇒(y+4+x-1)(y+4-x+1)=0.

Уравнение равносильно совокупности

$$\int_{0}^{1} \frac{y-x+5=0}{y+x+3=0}$$

и на плоскости ху задает две прямые (рис. 33).

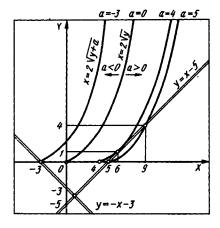


Рис. 33

Уравнению $x=a+2\sqrt{y}$ в зависимости от значения a соответствует семейство кривых в плоскости xy, представляющих правую ветвь параболы. Вершина параболы имеет координаты $x=a,\ y=0$. При увеличении a парабола смещается вправо, при уменьшении a влево. При a=-3 вершина параболы попадает на прямую y=-x-3, а при всех a<-3 парабола пересекает эту прямую. При движении параболы вправо надо найти значение параметра a_k , при котором парабола будет касаться прямой y=x-5. При $a>a_k$ правая ветвь параболы имеет с прямой y=x-5 одну или даже две общие точки.

Таким образом, исследование данной системы уравнений можно заменить исследованием двух более простых систем

$$\begin{cases} x = a + 2\sqrt{y} \\ y - x + 5 = 0, \end{cases} \begin{cases} x = a + 2\sqrt{y} \\ y + x + 3 = 0. \end{cases}$$

Исследуем на совместимость первую систему.

$$\begin{cases} x = a + 2\sqrt{y} & \Leftrightarrow \begin{cases} x - a = 2\sqrt{y} & \Leftrightarrow \begin{cases} 2\sqrt{x - 5} = x - a \Leftrightarrow \\ y = x - 5 \end{cases} & \Leftrightarrow \begin{cases} 4(x - 5) = (x - a)^2 \\ x \geqslant a \\ y = x - 5 \end{cases} & \Leftrightarrow \begin{cases} x^2 - 2(a + 2)x + a^2 + 20 = 0 \\ x \geqslant a \\ y = x - 5 \end{cases}$$

Корни первого уравнения $x_{1.2} = (a+2) \pm \sqrt{(a+2)^2} - a^2 - 20 = = (a+2) \pm 2\sqrt{a-4}$. Найдем теперь при каких a выполняется условие $x \geqslant a$, для чего надо решить неравенства $(a+2) \pm 2\sqrt{a-4} \geqslant a$,

$$\begin{cases} 2\sqrt{a-4} \geqslant -2 \\ -2\sqrt{a-4} \geqslant -2 \end{cases} \Rightarrow \begin{cases} \sqrt{a-4} \geqslant -1 \\ \sqrt{a-4} \leqslant 1 \end{cases} \Rightarrow \begin{cases} a \geqslant 4 \\ a \geqslant 4 \\ a \leqslant 5 \end{cases}$$

Покажем расположение корней $x_1 = (a+2) + 2\sqrt{a-4}$ и на числовой оси a: $x^2 = (a+2) - 2\sqrt{a-4}$

Т. е. при a=4 корни совпадают, при $a\in]4;\ 5]$ оба корня x_1 и x_2 , при a>5 один корень x_1 .

Исследуем систему

$$\begin{cases} x = a + 2\sqrt{y} & \Leftrightarrow \begin{cases} x - a = 2\sqrt{y} & \Leftrightarrow \begin{cases} 2\sqrt{-x - 3} = x - a \Leftrightarrow y + x + 3 = 0 \end{cases} & \Leftrightarrow \begin{cases} 4(-x - 3) = (x - a)^2 & \Leftrightarrow \begin{cases} x^2 - 2(a - 2)x + a^2 + 12 \\ x \geqslant a \\ y = -x - 3 \end{cases} & \Leftrightarrow \begin{cases} x \geqslant a \\ y = -x - 3 \end{cases}$$

Корни первого уравнения $x_{3,4} = (a-2) \pm 2\sqrt{-a-2}$,

$$\begin{array}{l} (a-2)\pm\sqrt{-a-2}\geqslant a\Rightarrow \begin{bmatrix} \sqrt{-a-2}\geqslant 1\\ \sqrt{-a-2}\leqslant -1 \end{bmatrix}\Rightarrow\\ \Rightarrow \begin{bmatrix} a\leqslant -2\\ -a-2\geqslant 1 \Leftrightarrow \begin{bmatrix} a\leqslant -3\\ \varnothing \end{bmatrix} \end{array}$$

На числовой оси a



Ответ: система уравнений имеет решение при

$$a \in]-\infty; -3] \cup [4; +\infty[. \blacktriangle]$$

Замечание. Приведенное решение фактически является исследованием системы, что позволяет дать более широкий ответ, который сведен в таблицу.

Параметр	Решение	Количество решений
$a\in]-\infty;-3]$	$x_3 = (a-2) + 2\sqrt{-a-2} y_3 = -x_3 - 3$	ı
<i>a</i> ∈] − 3; 4[решений нет	-
a=4	$ \begin{array}{c} x_1 = x_2 = 6 \\ y = 1 \end{array} $	1
a∈]4; 5]	$x_{1,2} = (a+2) \pm 2\sqrt{a-4}$ $y_{1,2} = x_{1,5} - 5$	2
$a\in$]5; $+\infty$ [$ \begin{array}{c} x_1 = a + 2 + 2\sqrt{a - 4} \\ y_1 = x_1 - 5 \end{array} $	1

Пример 3. Найти все значения параметра a, при которых система уравнений

$$\left\{ egin{aligned} x^2 + y &= 2x \\ x^2 + y_2 + a^2 &= 2x + 2ay \end{aligned}
ight.$$
 имеет решение.

 \triangle Группируя слагаемые, содержащие x и y, перепишем систему уравнений в виде

$$\begin{cases} y-1 = -(x-1)^2 \\ (x-1)^2 + (y-a)^2 = 1. \end{cases}$$
 (1)

Первое уравнение системы задает на плоскости xy параболу с вершиной в точке A (1:1), второе — окружность радиуса 1 с центром в точке O_1 (1; a) (рис. 34). При увеличении параметра a окружность смещается вверх, при уменьшении a — вниз. Сразу видно, что окружность и парабола не имеют общих точек, если a > 2.

Наименьшему значению a, при котором система совместима, соответствует окружность, касающаяся параболы снизу.

При сложении уравнений системы (1) получается уравнение, содержащее только неизвестное u:

$$y^2 - (2a+1)y + a^2 = 0. (2)$$

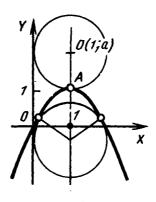


Рис. 34

Важно отметить, что из первого уравнения системы (1) следует ограничение $y \le 1$.

Теперь задачу переформулируем так: найти все значения параметра a, при которых уравнение (2) имеет решение, удовлетворяющее условию $y\leqslant 1$. Найдем дискриминант уравнения $D=(2a+1)^2-4a^2=4a+1$. При $a\geqslant \frac{1}{4}$ существуют корни $y_{1,2}=(2a+1\pm\sqrt{4a+1})/2$ уравнения. Найдем a, при которых меньший корень не превышает единицы: $(2a+1-\sqrt{4a+1})\times 2\leqslant 1\Rightarrow \sqrt{4a+1}\geqslant 2a-1$. Если 2a-1<0, т. е. при a<

межуток
$$-\frac{1}{4} \leqslant a < \frac{1}{2}$$
 (3).

Если же $2a-1\geqslant 0$, т. е. $a\geqslant \frac{1}{2}$ то, возведя в квадрат, перейдем к равносильному неравенству $4a+1\geqslant (2a-1)^2\Rightarrow a^2-2a\leqslant 0\Rightarrow 0\leqslant a\leqslant 2$ с учетом $a\leqslant 1/2$, получаем $1/2\leqslant a\leqslant 2$ (4). Объединяя промежутки (3) и (4), получаем решение задачи $1/2\leqslant a\leqslant 2$. \blacktriangle

Пример 4. Определить при каких а система уравнений

$$\begin{cases} x^2 + y^2 = 2(1+a) \\ (x+y)^2 = 14 \end{cases}$$
 имеет в точности два решения.

 \triangle Первое уравнение системы на графике — окружность с центром в начале координат. Радиус изменяется при изменении величины a.

Преобразуя второе уравнение, получим $(x+y)=\sqrt{14}$, при x+y>0. Т. е. y>-x, имеем $y=-x+\sqrt{14}$ (рис. 35); при x+y<0, т. е. при y<-x имеем $y=-x-\sqrt{14}$. Система будет

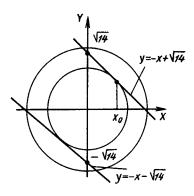


Рис. 35

иметь ровно два решения, если окружность будет касаться обеих линий. Определим абсциссу x_0 точки касания. Запишем первое уравнение в явном виде $y=\pm\sqrt{2(1+a)-x^2}$ и возьмем производную от этой функции

$$y' = \frac{-2x}{2\sqrt{2(1+a)-x^2}}$$
; и, т. к. $y'(x_0) = -1$, то $\frac{-x_0}{\sqrt{2(1+a)-x_0^2}} = -1$ или

 $x_0 = \sqrt{2(1+a)-x_0^2}$, $x_0^2 = 1+a$ и $x_0 = \sqrt{1+a}$.

Вычислим a, используя условие, что точка касания общая для линий $y=\sqrt{2}\frac{(1+a)-x^2}{(1+a)-x^2}$ и $y=-x+\sqrt{14}$, $-x+\sqrt{14}=\sqrt{2}\frac{(1+a)-x^2}{(1+a)-x^2}$ при $x=x_0=\sqrt{1+a}-\sqrt{1+a}+\sqrt{14}=\sqrt{1+a}$ $=\sqrt{2}\frac{(1+a)-(1+a)}{2}$ $=\sqrt{1+a}+\sqrt{14}=\sqrt{1+a}$, $\sqrt{1+a}=\frac{\sqrt{14}}{2}$ $=\sqrt{1+a}+\sqrt{1+a}=\frac{14}{4}\Rightarrow a=\frac{5}{2}$.

Other: $a=\frac{5}{2}$.

Пример 5. Найти все a, при каждом из которых имеется хотя бы одна пара чисел (x, y), удовлетворяющим условиям:

$$\begin{cases} x^2 + (y+3)^2 < 4 \\ y = 2ax^2. \end{cases}$$

 \triangle Очевидно, что система имеет хотя бы одно решение тогда и только тогда, когда имеет хотя бы одно решение неравенство

$$x^2 + (2ax^2 + 3)^2 < 4$$
 (1)

полученное подстановкой в данное неравенство $2ax^2$ вместо y.

Обозначим черех f(t) функцию $t+(2at+3)^2$. Неравенство (1) будет иметь решение только в том случае, когда наименьшее значение функции f(t) на множестве $t\geqslant 0$ равно 9, что больше 4. Следовательно, a=4 не отвечает условию задачи.

Если $a\neq 0$, то график функции $f(t)=t+(2at+3)^2=4a^2t^2+(12a+1)t+9$ представляет параболу, ветви которой направлены вверх, и абсцисса вершины равна $t_0=-\frac{12a+1}{8a^2}$; если $t_0\leqslant 0$, то $12a+1\geqslant 0$, $a\neq 0$, то на множестве $t\geqslant 0$ функция f(t) монотонно возрастает и, значит, ее наименьшее значение на этом множестве равно f(0)=9>4. Таким образом, все искомые значения параметра a лежат в области $12a+1\leqslant 0$. В этом случае точка t_0 лежит в области $t\geqslant 0$ и наименьшее значение f(t) равно

$$f(t_0) = 4a^2 \left(-\frac{12a+1}{8a^2} \right)^2 - \frac{(12+1)^2}{8a^2} + 9 = -\frac{24a+1}{16a^2}.$$

Итак, все искомые значения параметра a являются решениями системы неравенств,

$$\begin{cases}
12a+1 < 0 \\
-\frac{24a+1}{16a^2} < 4.
\end{cases}$$
(2)

Система (2) равносильна системе

$$\begin{cases}
12a+1<0 \\
64a^2+24+1>0
\end{cases}$$

и решением первого неравенства являются все $a < -\frac{1}{12}$.

Квадратный трехчлен имеет корни

$$a_{\rm I} = \frac{-3 - \sqrt{15}}{16} \ {\rm M} \ a_2 \, = \frac{-3 + \sqrt{15}}{16} \, , \label{eq:a1}$$

а значит решением второго неравенства являются все $a < a_1$ и $a_2 < a$. Так как $\frac{-3-\sqrt{5}}{16} < -\frac{1}{2}$, $a \frac{-3+\sqrt{5}}{16} > -\frac{1}{12}$, то множество решений системы (2), а значит и множество значений параметра a, удовлетворяющих условию задачи, есть промежуток

$$a < \frac{-3 - \sqrt{5}}{16}$$

Ответ: $a < \frac{-3 - \sqrt{5}}{16}$.

Пример 6. Найдите все значения параметра *а*, при которых система уравнений

$$\begin{cases} \log_2(x+1) + \log_2 y = 2\\ y = a - 4x \end{cases}$$

имеет решение.

△ После потенцирования и преобразования системы имеем

$$\begin{cases} (x+1)y=4 \\ y=a-4x \end{cases} \Rightarrow \begin{cases} y=\frac{4}{x+1} & \text{при } x>-1, y>0. \end{cases}$$

Графическая иллюстрация системы показана на рис. 36. Видно, что пересечения линий можно ожидать при увеличении значения a. При a=4 прямая y=a-4x касается гиперболы, а при a>4 пересекает ее в двух точках.

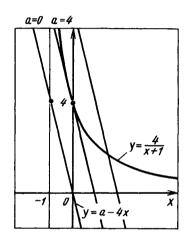


Рис. 36

Для аналитического решения воспользуемся заменой переменных и получим уравнение

$$(x+1)(a-4x) = 4 \Rightarrow 4x^2 - (a-4)x - a + 4 = 0.$$

Надо искать значение a, при которых уравнение имеет корни на x>-1; необходимые и достаточные условия этого см. утверждение 2 на c.~00, $\tau.~e.$

на с. 00, т. е.
$$\begin{cases} D \geqslant 0 \\ -\frac{b}{2a} > 1 \end{cases}$$
 или
$$\begin{cases} D = (a-4)^2 - 16(4-a) \geqslant 0 \\ \frac{a-4}{8} > -1 \end{cases} \Rightarrow \begin{cases} a^2 + 16a - 48 \geqslant 0 \\ a > -4 \\ a \in \mathbb{R}. \end{cases}$$

В неравенстве $a^2+16a-48\!\geqslant\!0$ трехчлен имеет корни a=-12 и a=4, тогда его решением является $a\in]-\infty;-12]\cup$ \cup [4; $+\infty$ [. с учетом двух других условий получаем решение

системы $a \in [4; +\infty]$. Очевидно, что при этих значениях a > -1, у будет больше нуля.

Other: $a \in [4; +\infty]$.

Пример 7. Найти все значения параметра а, при которых система уравнений

$$\begin{cases} \lg(1-y) = \lg x \\ y + a + 3 = \frac{1}{2}(x+a)^2 \end{cases}$$
 имеет решение.

 \triangle Вводим ограничения $\left\{ \substack{x>0\\y<1} \right\}$ по условию системы, потен-

цируя первое уравнение, получим систему
$$\begin{cases} 1-y=x \\ y+a+3=\frac{1}{2}(x+a)^2 \Rightarrow \begin{cases} -y=x-1 \\ y=-a-3+\frac{1}{2}(x+a)^2, \end{cases}$$

после сложения получим уравнение $\frac{1}{2}(x+a)^2+x-a-4=0$ или $x^2 + 2ax + a^2 + 2x - 2a - 8 = 0 \Rightarrow x^2 + 2(a+1)x + a^2 - 2a - 4a = 0$ -8 = 0.

Теперь для ответа на вопрос задачи надо решить систему

$$\begin{cases} y = -x + 1 \\ x^2 + 2(a+1)x + a^2 - 2a - 8 = 0 \\ x > 0 \\ y < 1. \end{cases}$$

Из первого уравнения видно, что y < 1 для всех x > 0. При указанных ограничениях второе уравнение системы может иметь: положительные корни, корни разного знака и один корень нулевой, другой положительный.

Для того чтобы уравнение имело положительные корни, не-

обходимо и достаточно иметь

$$\begin{cases}
D \geqslant 0 \\
-\frac{p}{2} > 0 \Rightarrow \begin{cases}
D = (a+1)^2 - a^2 + 2a + 8 \geqslant 0 \\
-\frac{p}{2} = -(a+1) > 0
\end{cases} (1)$$

$$a^2 - 2a - 8 > 0 (2)$$

$$(3)$$

Решим каждое неравенство отдельно

1) $a^2 + 2a + 1 - a^2 + 2a + 8 \geqslant 0 \Rightarrow a \geqslant -9/4$,

2) $a+1 < 0 \Rightarrow a < -1$,

3) корни трехчлена $a_1 = -2$ и $a_2 = 4$, тогда решениями неравенства будут a < -2 или a > 4. Решением системы будет промежуток $-9/4 \le a < -2$.

Для того чтобы корни уравнения имели разный знак, необходимо и достаточно иметь $q < 0 \Rightarrow a^2 - 2a - 8 < 0 \Rightarrow -2 < a < 4$.

Один корень нулевой, а другой положительный при q=0. проверкой убеждаемся, что при a = -2 $x_1 = 0$ и $x_2 = 2$.

Объединяя полученные решения, запишем ответ.

Ответ: $-9/4 \le a < 4$.

Пример 8. Найти все значения параметра k, при которых система уравнений

$$\begin{cases} y - \frac{1}{2} = k(x+2) \\ y = \sqrt{x} \end{cases}$$

имеет решение.

△ Вычтем второе уравнение из первого и получим

$$\sqrt{x} = k(x+2) + \frac{1}{2}$$
 и после замены $\sqrt{x} = t \geqslant 0$ получаем $kt^2 - t + 2k + \frac{1}{2} = 0$.

Корни этого уравнения будут удовлетворять исходной системе, если они оба положительны или имеют разный знак, один из них нулевой, при D=0 корень положительный и при k=0 корень положительный.

Найдем k, при которых оба корня положительны:

Пайдем
$$k$$
, при которых оба корня положительны.
$$\begin{cases}
D \geqslant 0 \\
-\frac{p}{2} > 0 \\
q > 0,
\end{cases}
\begin{cases}
D = 1 - 4k \left(2k + \frac{1}{2}\right) \geqslant 0 \\
\frac{1}{2k} > 0 \\
\frac{2k + \frac{1}{2}}{k} > 0
\end{cases}
\begin{cases}
8k^2 + 2k - 1 \leqslant 0 \\
k > 0 \\
k < -\frac{1}{4} \text{ и } k > 0.
\end{cases}$$

Решением верхнего неравенства являются все $k \in \left[-\frac{1}{2}; \frac{1}{4}\right]$. Тогда решение системы $0 < k \leqslant \frac{1}{4}$.

Найдем k, при которых корни имеют разный знак:

$$\begin{cases}
D > 0 \\
q < 0
\end{cases}
\qquad
\begin{cases}
-\frac{1}{2} < k < \frac{1}{4} \\
-\frac{1}{4} < k < 0
\end{cases}
\Rightarrow -\frac{1}{4} < k < 0.$$

С учетом того, что исходная система имеет решение x=0, y=0 при k=0 получаем

Other: $-\frac{1}{4} \leqslant k \leqslant \frac{1}{4}$; \blacktriangle

Пример 9. Найти все значения, при которых система

$$\begin{cases} \log_2 y - \log_2 (a - x) = 2 \\ y = \frac{x+4}{x} \end{cases}$$

1) имеет единственное решение; 2) имеет два решения; 3) имеет решение; 4) не имеет решения.

Потенцируя, получим систему
$$\begin{cases} \frac{y}{a-x} = 4 \\ y = \frac{x+4}{x} \end{cases}$$
 или $\begin{cases} y = 4a - 4x \\ y = \frac{x+4}{x}, \end{cases}$ (*)

при ограничениях по исходной системе

$$\begin{cases} y>0 \\ a-x>0 \end{cases} \Rightarrow \begin{cases} y>0 \\ x< a \end{cases}$$
 при $x \neq 0$; $y>0$ при $\frac{x+4}{x}>0$, откуда $x<-4$ и $0< x$ и т. к. $x< a$, то $a<-4$ и $a>0$. Решая систему (*) подстановкой, получим

$$\begin{cases} 4x^2 + (1-4a)x + 4 = 0 \\ x < a \\ a < -4, \ a > 0. \end{cases}$$

- 1) Находим единственное решение на x < a. Оно будет, если точка a располагается между корнями уравнения $4x^2 + (1-4a) \times x + 4 = 0$, т. е. $f(a) = 4a^2 + (1-4a)a + 4 < 0 \Rightarrow a < -4$. Кроме того, при D = 0 будет единственное решение. $D = (1-4a)^2 64 = 0$, a = 9/4 и a = -7/4. Проверим, попадет ли корень при этих a на множество x < a. При a = 9/4 $4x^2 8x + 4 = 0$, откуда $x = 1 \in x < a$. При a = -7/4 $4x^2 + 8x + 4 = 0$, $x = -1 \notin x < a$. Тогда единственное решение при $a \in (-\infty; -4) \cup \{9/4\}$.
- 2) Находим два решения на x < a. Необходимым и достаточным условием этого будет:

$$\begin{cases} D > 0 \\ f(a) > 0 \\ -\rho/2 < a \end{cases}$$
 или
$$\begin{cases} a < -7/4, \ a > 9/4 \\ a > -4 \\ -\frac{1-4a}{4} < a \end{cases} \Rightarrow a > 9/4.$$

Два решения будут при a > 9/4.

- 3) Чтобы ответить на этот вопрос, нужно проделать предыдущие вычисления и объединить ответ, т. е. $a\in (-\infty; -4)\cup [9/4; +\infty)$.
- 4) Чтобы ответить на этот вопрос, нужно ответить на вопрос 3 и все, что не попало в этот ответ, использовать для данного ответа, т. е. $a \in [-4; 9/4)$.

Решение хорошо иллюстрируется графически. Для этого постройте график $y=\frac{x+4}{x}$ на x<-4 и x>0 и семейство параллельных линий y=-4x+4a.

Пример 10. Решить систему уравнений

$$\begin{cases} xy = a^{2} \\ \lg^{2}x + \lg^{2}y = \frac{5}{2} \lg^{2}a^{2}. \end{cases}$$

 \triangle Допустимые значения неизвестных и параметра x>0, y>0 и $a\neq 0$. После логарифмирования первого уравнения получаем $\lg x + \lg y = \lg a^2$. Обозначим $\lg x = u$, $\lg y = v$. Тогда относительно u и v система примет вид

$$\begin{cases} u + v = \lg a^2 \\ u^2 + v^2 = \frac{5}{2} \lg^2 a^2. \end{cases}$$

Из первого уравнения находим $v = \lg a^2 - u$ и подставляем его во второе. Получаем $2u^2 - 2\lg a^2 \cdot u - \frac{3}{2}\lg^2 a^2 = 0$. Откуда следует, что

да следует, что

$$\begin{split} u_{\mathrm{1,2}} &= \frac{\mathrm{lg} a^2 \pm 2 \mathrm{lg} a^2}{2} \, ; \quad u_{\mathrm{1}} &= \frac{3}{2} \, \mathrm{lg} a^2, \quad u_{\mathrm{2}} &= -\frac{1}{2} \, \mathrm{lg} a^2; \\ v_{\mathrm{1}} &= -\frac{1}{2} \, \mathrm{lg} a^2, \quad v_{\mathrm{2}} &= \frac{3}{2} \, \mathrm{lg} a^2. \end{split}$$

Таким образом, решение данной системы приводится к решению двух систем:

$$\begin{cases} \lg x = \frac{3}{2} \lg a^2 \\ \lg y = -\frac{1}{2} \lg a^2, \end{cases} \begin{cases} \lg x = -\frac{1}{2} \lg a^2 \\ \lg y = \frac{3}{2} \lg a^2. \end{cases}$$
$$\cdot \begin{cases} x = |a|^3 & x = \frac{1}{|a|} \\ y = \frac{1}{|a|}, & y = |a|^3. \end{cases}$$

При проверке полученные решения удовлетворяют условию исходной системы. 🛦

Пример 11. Найти все значения параметра a, при которых система уравнений

 $\begin{cases} 4+y = \sqrt{x} \\ a-y = \frac{1}{2} (\sqrt{x} + a)^2 \end{cases}$

1) имеет единственное решение; 2) имеет два решения; 3) имеет хотя бы одно решение; 4) не имеет решений.

 \triangle Решая систему методом подстановки, получим квадратное уравнение $y^2+2(a+5)y+a^2+6a+16=0$ (*), корни которого должны удовлетворять системе

$$\begin{cases} 4+y\geqslant 0\\ x\geqslant 0 & \text{или} \end{cases} \begin{cases} y\geqslant -4\\ x\geqslant 0 & \text{Очевидно, что } y\geqslant -4 \text{ при } a\geqslant -4.\\ y< a. \end{cases}$$

1). Единственное решение уравнения (*) возможно, когда точка y=-4 располагается между корнями трехчлена или вершина его параболы лежит на оси y, причем $y\geqslant -4$.

Первое условие выполняется при $f(-4) \leqslant 0$ (см. утверждения о расположении корней стр. 33) $f(-4) = 16 - 8(a+5) + a^2 +$ $+6a+16 \leqslant 0 \Rightarrow -2 \leqslant a \leqslant 4$. При a=-2 и a=4 один корень будет равен -4, но второй корень не должен попасть на множество y > -4. Проверим уравнение (*) на эти точки. При a=-2 $y^2+6y+8=0$, $y_1=4$, $y_2=2\in y>-4$. Значит a = -2 не единственное решение. При a = 4 $y^2 + 18y + 56 = 0$, $y_1 = -4$, $y_2 = -14 \notin y > -4$. Значит при a = 4 — единственное решение.

Вершина параболы располагается на оси при D = 0. D = 4a + 41 = 0, $a = -\frac{41}{4} \notin a \ge -4$.

Единственное решение будет при $-2-a \le 4$.

2) Два решения возможны, если оба корня трехчлена (*) попадают на множество $y \ge -4$. В соответствии с утверждениями о расположении корней (см. стр. 33) это будет, если

$$\begin{cases} D > 0 \\ f(-4) \geqslant 0 \\ -p/2 > -4 \end{cases} \begin{cases} a > -\frac{41}{4} \\ a \leqslant -2.4 \leqslant a \Rightarrow a \leqslant -2 \text{ c yyetom } a \geqslant -4, \\ -(a+5) > -4 \end{cases}$$

получаем $-4 \le a \le -2$, т. е. два решения при $a \in [-4; -2]$.

3) Чтобы ответить на этот вопрос, необходимо объединить ответы первого и второго вопросов, т. е. $a \in [-4:4]$.

4) Нет решения при тех а, которые не задействованы в вопросе 3, T. e. $a \in (-\infty; -4) \cup (4; +\infty)$.

Упражнения

1. Найти все значения параметра а, при которых система уравнений имеет решение.

1)
$$\begin{cases} y = (x-1)^{2} \\ y - x^{2} + (1-a)y - (1+a)x - a = 0, \\ 2) \begin{cases} y = 1 - x^{2} \\ y^{2} - x^{2} + (a+2)y - (a+2)x - 2a = 0, \end{cases}$$
3)
$$\begin{cases} y = 2x - x^{2} \\ y^{2} - x^{2} + (a-1)x - (a+1)y + a = 0, \\ 4) \begin{cases} y = 1 - x^{2} \\ y^{2} - x^{2} + (1-a)x + (1+a)y + a = 0, \end{cases}$$

2)
$$\begin{cases} y = 1 - x^2 \\ y^2 - x^2 + (a+2)y - (a+2)x - 2a = 0, \end{cases}$$

3)
$$\begin{cases} y = 2x - x^2 \\ y^2 - x^2 + (a - 1)x - (a + 1)y + a = 0, \end{cases}$$

4)
$$\begin{cases} y = 1 - x^2 \\ y^2 - x^2 + (1 - a)x + (1 + a)y + a = 0, \end{cases}$$

5)
$$\begin{cases} x^2 + 2x + y = 0 \\ y^2 - x^2 + (a+1)x + (a-1)y - a = 0. \end{cases}$$

Ответы: 1)
$$a \geqslant -\frac{5}{4}$$
, 2) $a \leqslant -\frac{5}{4}$, 3) $a \leqslant \frac{5}{4}$, 4) $a \geqslant \frac{9}{4}$,

- 5) $a \le \frac{9}{4}$.
 - 2. Исследовать системы:

1)
$$\begin{cases} x - a = 2\sqrt{y} \\ y^2 - x^2 + 4x + 8y + 12 = 0, \end{cases}$$

2)
$$\begin{cases} 2\sqrt{y} = x - a \\ y^2 - x^2 - 2x + 6y + 8 = 0, \end{cases}$$

3)
$$\begin{cases} x = a + 2\sqrt{y} \\ y^2 - x^2 + 2x + 10y + 24 = 0, \end{cases}$$

4)
$$\begin{cases} x = a + \sqrt{y} \\ y^2 - x^2 - 2x + 4y + 3 = 0, \end{cases}$$

5)
$$\begin{cases} \sqrt{y} = x - a \\ y^2 - x^2 + 6y - 4x + 5 = 0. \end{cases}$$

Ответы: 1) Система имеет решение при $a\in]-\infty; -2]\cup [5; +\infty[$; при $a\in]-\infty; -2]$ $x=(a-2)+2\sqrt{-a-1}, y=-x-2;$ при a=5, x=7, y=1; при $a\in]5;$ $x=(a+2)+2\sqrt{a-5}, y=(a+2)+2\sqrt{a-5}, y=(a+2)+2\sqrt{a-$

- 2) Система имеет решение при $a\in]-\infty; -4]\cup [1; +\infty[;$ при $a\in]-\infty; -4]$ $x=(a-2)+2\sqrt{-a-3}, y=-x-4; a=1, x=3, y=1;$ при $a\in]; 1; 2]$ $x_{1,2}=(a+2)\pm 2\sqrt{a-1}, y_{1,2}=x_{1,2}-2;$ при $a\in]2; +\infty[x=(a+2)+2\sqrt{a-1},y=x-2;$ при $a\in]-4; 1[$ решений нет.
- 3) Система имеет решение при $a\in]-\infty;-4]\cup [5;+\infty[;$ при $a\in]-\infty;-4]x=(a-2)+2\sqrt{-a-3},y=-x-4;$ при $a\in]-4;$ 5[решений нет; при a=5,x=7,y=1; при $a\in]5;$ 6[$x_{1,2}=(a+2)\pm 2\sqrt{a-5},y_{1,2}=x_{1,2}-6;$ при $a\in]6;+\infty[x=(a+2)+2\sqrt{a-5},y=x-6.$
- 4) Система имеет решение при $a\in]-\infty; -3] \cup \left[\frac{3}{4}; +\infty \right[;$ при $a\in]-\infty; -3] x=\frac{(2a-1)\pm\sqrt{-4a-11}}{2}, y=-x-3;$ при $a\in]-3; \frac{3}{4}[$ решений нет; при $a=\frac{3}{4}$ x=1,25, y=0,25;

при
$$a\in]\frac{3}{4};\ 1]\ x_{1,2}=\frac{(2a+1)\pm\sqrt{4a-3}}{2},\ y_{1,2}=x_{1,2}-1;$$
 при $a\in]1;\ +\infty[\ x=\frac{2a+1+\sqrt{4a-3}}{2},\ y=x-1.$

5) Система имеет решение при $a\in]-\infty; -5]\cup \left[\frac{3}{4}; +\infty\right[;$ при $a\in]-\infty; -5]x=\frac{(2a-1)+\sqrt{-4a-19}}{2}, y=-x-5;$ при $a\in]-5; \frac{3}{4}[$ решений нет; при a=3/4, x=1,25, y=0,25; при $a\in]\frac{3}{4};$ 1] $x_{1,2}=\frac{(2a+1)\pm\sqrt{4a-3}}{2}, y_{1,2}=x_{1,2}-1;$ при $a\in]1; +\infty[$ $x=\frac{(2a+1)+\sqrt{4a-3}}{2}, y=x-1.$

3. Найти все значения параметра a, при которых системы имеют решение.

1)
$$\begin{cases} y = x^2 + 2x + 2 \\ x^2 + 2x^2 + y^2 - 2ay + a^2 = 0, \end{cases}$$
 2)
$$\begin{cases} y = x^2 - 2x + a \\ x^2 - 2x + y^2 = 0, \end{cases}$$
 3)
$$\begin{cases} x^2 + y = 2x + a \\ x^2 + y^2 = 2x, \end{cases}$$
 4)
$$\begin{cases} x = y^2 - 2y + a \\ x^2 + y^2 + 1 = 2x + 2y, \end{cases}$$
 5)
$$\begin{cases} x = y^2 - 2y \\ y^2 + x^2 + a^2 = 2y + 2px. \end{cases}$$
 0TBetы: 1) $a \in [0; \frac{9}{4}];$ 2) $a \in [-\frac{1}{4}; 2];$ 3) $a \in [-2; \frac{1}{4}];$ 4) $a \in [0,75; 3];$ 5) $a \in [-2; 0,25].$

4. Определить, при каких a система уравнений имеет ровно два решения

1)
$$\begin{cases} x^2 + y^2 = 2a \\ xy = a - \frac{1}{2}, \end{cases}$$
 2)
$$\begin{cases} (x - y)^2 = \frac{2}{3} \\ xy = 5a - \frac{1}{3}, \end{cases}$$
 3)
$$\begin{cases} x - y = 6a - 14 \\ x^2 + y^2 = 3(2 + a). \end{cases}$$
 Otbeth: 1) $a = \frac{1}{4}$; 2) $a = \frac{1}{30}$; 3) $a = \frac{7}{3}$.

5. Найти все a, при каждом из которых имеется хотя бы одна пара чисел (x, y), удовлетворяющая условиям:

1)
$$\begin{cases} x^2 + (y-2)^2 < 1 \\ y = ax^2, \end{cases}$$
 2) $\begin{cases} x^2 - y^2 > 1 \\ y = ax^2 + 1, \end{cases}$ 3) $\begin{cases} x^2 - (y-a)^2 > 1 \\ y = x^2 + 1 \end{cases}$ Otbeth: 1) $\frac{2+\sqrt{3}}{2} < a;$ 2) $\frac{-1-\sqrt{2}}{a} < a < \frac{-1+\sqrt{2}}{2};$ 3) $a > \frac{7}{4}$.

6. Решить системы
$$\begin{cases} \log_a x - \log_{a^2} y = m \\ \log_{a^2} x - \log_{a^3} y = n, \end{cases}$$
 2)
$$\begin{cases} (\log_a x + \log_a y - 2) \log_{\frac{4}{9}} a = -1 \\ x + y - 5a = 0, \end{cases}$$

$$a>\frac{7}{4}$$

Ответы: 1) при a > 0, $a \ne 1$ $(a^{2^{(2m-3n)}}, a^{6^{(m-2n)}})$

- 2) при a > 0, $a \ne 1$ (a/2; 9a/2); (9a/2; a/2).
- 7. Найти все значения параметра a, при которых системы уравнений: 1—7 имеют единственное решение; 8—14 — два решения; 15—21 — хотя бы одно решение.

1)
$$\begin{cases} \lg(1-y) = \lg(1-x) \\ y+a+2 = \frac{1}{2}(a-x)^2, \end{cases}$$
 2)
$$\begin{cases} \lg(y-1) = \lg(1-x) \\ 4+a-y = \frac{1}{2}(x-a)^2, \end{cases}$$

1)
$$\begin{cases} \lg(1-y) = \lg(1-x) \\ y+a+2 = \frac{1}{2}(a-x)^2, \end{cases}$$
 2)
$$\begin{cases} \lg(y-1) = \lg(1-x) \\ 4+a-y = \frac{1}{2}(x-a)^2, \end{cases}$$
 3)
$$\begin{cases} \log_2(1-2y) = 1 + \log_2 x \\ y+a + \frac{3}{2} = (x+a)^2, \end{cases}$$
 4)
$$\begin{cases} \lg(4+y) = \lg x \\ a-y = \frac{1}{2}(x+a)^2, \end{cases}$$

5)
$$\begin{cases} \log_2(x+1) + \log_2 y = 2 \\ y = a - 4x, \end{cases}$$
6)
$$\begin{cases} \log_2(x+1) + \log_2 y = 2 \\ 4y = a - x, \end{cases}$$
7)
$$\begin{cases} \log_2(1-x) + \log_2 y = 2 \\ y = a + 4x, \end{cases}$$
8)
$$\begin{cases} \log_2(x+1) + \log_2 y = 2 \\ 4y = a - x, \end{cases}$$
9)
$$\begin{cases} \log(2-x) + \log_2(1-y) = 2 \\ 4y = a - x, \end{cases}$$

7)
$$\begin{cases} \log_2(1-x) + \log_2 y = 2 \\ y = a + 4x, \end{cases}$$
 8)
$$\begin{cases} \log_2 x + \log(1-y) = 2 \\ y = a + 4x, \end{cases}$$

9)
$$\begin{cases} \log(2-x) + \log_2(1-y) = 2 \\ 4 - x - y - 1 \end{cases}$$

10)
$$\begin{cases} \log_2(1-x) + \log_2(1-y) = 2\\ y = a - x \end{cases}$$

10)
$$\begin{cases} \log_2(1-x) + \log_2(1-y) = 2\\ y = a - x\\ \log_2(y + a - 2) = \log_2(a + x) - 1\\ y = 2\sqrt{1 - x}. \end{cases}$$

12)
$$\begin{cases} 1 + \log_2(a - 2 - y) = \log_2(a - x) \\ y + 2\sqrt{x} = 1, \\ 1 + \log_2(y + a - 11) = \log_2(a + x) \\ y = 4\sqrt{1 - x}, \end{cases}$$

13)
$$\begin{cases} 1 + \log_2(y + a - 11) = \log_2(a + x) \\ 1 + \log_2(y + a - 11) = \log_2(a + x) \end{cases}$$

14)
$$\begin{cases} \log_2(y+1) = \log_2(a-4x) \\ y = \frac{4}{x}, \end{cases}$$
 15)
$$\begin{cases} \log_2(a-4y) = \log_2(x+1) \\ y = \frac{4}{x}, \end{cases}$$

16)
$$\begin{cases} xy + 4 = 0 \\ \log_2(y+1) = \log_2(4x+a), \end{cases}$$

17)
$$\begin{cases} \log_2(g+1) - \log_2(x+a), \\ \log_2(1-y) - \log_2(a-x) = 2, \\ xy + 4 = 0, \end{cases}$$

18)
$$\begin{cases} \log_2(x+1) - \log_2(a-y) = 2 \\ -xy + 4 = 0, \end{cases}$$

18)
$$\begin{cases} \log_2(x+1) - \log_2(a-y) = 2\\ -xy + 4 = 0, \\ \log_2 y - \log_2(a-x) = 2 \end{cases}$$
19)
$$\begin{cases} \log_2 y - \log_2(a-x) = 2\\ y = \frac{x+4}{x}, \end{cases}$$

20)
$$\begin{cases} 1 + \log_2(y + a - 12) = \log_2(a - x) \\ y = 4\sqrt{x}, \end{cases}$$

21)
$$\begin{cases} y = \sqrt{(x-a)^2 - 9} \\ 4y = 5x. \end{cases}$$

Ответы: 1)
$$[-5/4; -1) \cup (-1; 5);$$
 2) $[-5/4; -1];$ 3) $\left[-17/8; \frac{1-\sqrt{17}}{2}\right);$ 4) $[-9/4; -2);$ 5) $[4; +\infty);$

- 6) $[7; +\infty)$;
- 7) $(-\infty; -7]$; 8) $(-\infty; -7]$; 9) $]-\infty; -2]$; 10) $(-\infty; -2]$;

- 11) $(-\infty; 5]$ 12) $(-\infty; 6]$; 13) $(-\infty; 3]$; 14) $a \in (-\infty; -16) \cup [9; +\infty)$; 15) $a \in (-\infty; -16) \cup [9; +\infty)$; 16) $a \in (-\infty; -16) \cup [9; +\infty)$;

- 17) $a \in (-\infty; -16) \cup (12; +\infty);$ 18) $a \in (-\infty; -4) \cup [9/4; +\infty);$ 19) $a \in (-\infty; -4) \cup [9/4; +\infty);$
- 21) $\left(-\infty; -\frac{9}{5}\right] \cup [3; +\infty).$
- 8. Найти все значения параметра \emph{k} , при которых система уравнений имеет решение.

1)
$$\begin{cases} 2y = k(x+2) + 1 \\ y = \sqrt{x}, \end{cases}$$
 2) $\begin{cases} y = 2 + k(3 - x) \\ y = 4\sqrt{1 - x}, \end{cases}$

3)
$$\begin{cases} y = 2 + k(x+2) \\ y = 4\sqrt{x}, \end{cases}$$
 4)
$$\begin{cases} y = 2\sqrt{x-2} \\ y = kx+1, \end{cases}$$

5) $\begin{cases} 2y - 1 = k(3 - x) \\ y - 4\sqrt{1 - x} \end{cases}$

Ответы: 1) $-\frac{1}{2} \leqslant k \leqslant 0$; 2) $-1 \leqslant k \leqslant 1$; 3) $-1 \leqslant k \leqslant 1$;

4)
$$-\frac{1}{2} \leqslant k \leqslant \frac{1}{2}$$
; 5) $-\frac{1}{4} \leqslant k \leqslant 1$.

9. При каких k система уравнений

$$\begin{cases} y = kx - 1 \\ y = 2\sqrt{x - 2}. \end{cases}$$

а) не имеет решения; б) имеет единственное решение; в) имеет два решения?

Ответы: a)
$$a < 1$$
 б) $a = 1$, $a > \frac{1}{2}$, B) $\frac{1}{2} < a < 1$.

10. Решить систему

$$\begin{cases} x^2 + y^2 = a^2 \\ \log_b x + \log_b y = 2, \ b > 0, \ b \neq 1. \end{cases}$$

Ответ: Если $a^2-2b^2\!\geqslant\!0$, то $x_1=\frac{1}{2}(\sqrt{a^2+2b^2}+\sqrt{a^2-2b^2})$,

$$y_1 = \sqrt{a^2 + 2b^2} - \sqrt{a^2 - 2b^2}$$
 in $x_2 = y_1$, $y_2 = x_1$.

11. При каких значениях a система

$$\begin{cases} |x| + |y| = 1 \\ x^2 + y^2 = a \end{cases}$$

имеет решения? Найти эти решения.

Ответ:
$$\frac{1}{2} \leqslant a \leqslant 1$$
; $x_{1,2} = \frac{1 \pm \sqrt{2a-1}}{2}$, $y_{1,2} = \frac{1 \mp \sqrt{2a-1}}{2}$; $x_3 = x_2$, $y_3 = y_2$, $x_4 = -x_1$, $y_4 = y_1$, $x_5 = -x_1$, $y_5 = -y_1$, $x_6 = -x_2$, $y_6 = -y_2$, $x_7 = x_2$, $y_7 = -y_2$, $x_8 = x_1$, $y_8 = -y_1$.

12. Решить систему

$$\begin{cases} \log_y x + \log_x y = 5/2 \\ x + y = a + a^2 \end{cases}$$

и исследовать решение в зависимости от a,

Ответ: a > 0, $a \ne 1$, x = a, $y = a^2$ и $x = a^2$, y = a.

Если a < -1, но $a \ne -2$, то x = -(a+1), $y = (a+1)^2$ и $x = (a+1)^2$ y = -(a+1). Если $-1 \le a \le 0$, то решения нет.

Примеры с решениями

Пример 12. Найти все значения параметра а, для каждого из которых существует только одно значение х, удовлетворяющее системе уравнений

$$\begin{cases} |x^2 - 5x + 4| - 9x^2 - 5x + 4 + 10x|x| = 0\\ x^2 - 2(a - 1)x + a(a - 2) = 0. \end{cases}$$

🛆 Решим сначала первое уравнение системы. Для этого освободимся от знака абсолютной величины, используя метод интервалов. Поскольку $x^2 - 5x + 4 = 0$ при x = 1 и x = 4, то разобьем числовую ось на промежутки $x \le 0$, $0 < x \le 1$, $1 < x \le 4$, 4 < x и найдем решения первого уравнения системы на каждом из этих промежутков.

1) Пусть $x \le 0$, тогда $|x^2 - 5x + 4| = x^2 - 5x + 4$, |x| = -x, и первое уравнение системы запишется в виде $-18x^2 - 10x + 8 = 0$. Это уравнение имеет корни $x_1 = -1$, $x_2 = 4/9$. В рассматриваемый

промежуток входит только $x_1 = -1$, т. е. -1 — корень первого

уравнения.

2) Пусть $0 < x \le 1$, тогда $|x^2 - 5x + 4| = x^2 - 5x + 4$, |x| = x, и первое уравнение системы запишется в виде $2x^2 - 10x + 8 = 0$. Это уравнение имеет корни $x_3 = 1$ и $x_4 = 4$, из которых в рассматриваемый промежуток входит только $x_3 = 1$.

3) Пусть $1 < x \le 4$, тогда $|x^2 - 5x + 4| = -(x^2 - 5x + 4)$, |x| = x и первое уравнение системы равносильно тождеству 0 = 0, т. е. удовлетворяется при любом значении x из промежутка $1 < x \le 4$. 4) Пусть $4 < x < + \infty$, тогда $|x^2 - 5x + 4| = x^2 - 5x + 4$, |x| = x,

4) Пусть $4 < x < +\infty$, тогда $|x^2 - 5x + 4| = x^2 - 5x + 4, |x| = x$, и первое уравнение системы запишется в виде $2x^2 - 10x + 8 = 0$. Это уравнение имеет корни $x_5 = 1$, $x_6 = 4$, ни один из которых не входит в рассматриваемый промежуток.

Собирая вместе все найденные выше решения, получаем, что решениями первого уравнения являются x = -1, и все x из промежутка $1 \le x \le 4$.

Теперь надо подобрать a второго уравнения так, чтобы один его корень попадал на отрезок [1; 4], а второй — не равнялся бы -1, и наоборот, если один коречь равен -1, то второй не должен попадать на отрезок [1; 4]. Возможные варианты расположения корней показаны на рис. 37.

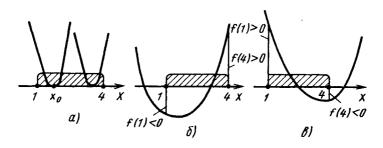


Рис. 37

На рис. 37, a показан случай, когда график трехчлена $f=(x)=x^2-2(a-1)x+a(a-2)$ расположен так, что вершина x_0 параболы находится на оси OX и принадлежит отрезку [1; 4], т. е. $1\leqslant x_0\leqslant 4$. А так как $x_0=a-1$, то $1\leqslant a-1\leqslant 4$ или $2\leqslant a\leqslant 5$. При этом дискриминант должен быть равен нулю, т. е. $D=(a-1)^2-a(a-2)=0$, $a^2-2a+1-a^2+2a=0$, 1=0. Значит, нет a, при которых D=0, а значит и случай a) невозможен.

На рис. 37, δ показан случай, когда график трехчлена f(x) таков, что точка x=1 расположена между корнями трехчлена, а точка x=4 — правее обоих корней. Этот случай реализуется, если:

$$\begin{cases} f(1) < 0 & \begin{cases} f(1) = 1 - 2(a - 1) \cdot 1 + a^2 - 2a \le 0 \\ f(4) \ge 0, & \end{cases} \Leftrightarrow \begin{cases} f(4) = 16 - 2(a - 1) \cdot 4 + a^2 - 2a \ge 0 \\ a^2 - 4a + 3 \le 0 \\ a^2 - 10a + 24 \ge 0 \end{cases} \Rightarrow 1 \le a < 3.$$

Теперь надо проверить, не попадает ли меньший корень на x=-1, при каком-либо значении $a\in[1;\ 3]$. Пусть x=-1, тогда имеем $1+2(a-1)+a^2-2a=0\Leftrightarrow a^2=1$ $a=\pm 1$, т. е. при a=1 второе уравнение имеет два корня, на множестве решений первого, что не удовлетворяет системе. Значит 1< a<3. Но и a=-1 удовлетворяет условию задачи.

На рис. 37, ε показан случай, когда график трехчлена f(x) расположен так, что точка x=1 находится левее корней трехчлена, а точка x=4 между корнями. Этот случай реализуется,

если:

$$\begin{cases} f(1) \geqslant 0 & \begin{cases} f(1) = 1 - 2(a - 1) \ 1 + a^2 - 2a \geqslant 0 \\ f(4) < 0, & \begin{cases} f(4) = 16 - 2(a - 1) \ 4 + a^2 - 2a < 0 \end{cases} \Leftrightarrow \\ \Leftrightarrow \begin{cases} a^2 - 4a + 3 \geqslant 0 \\ a^2 - 10a + 24 < 0 \end{cases} \Rightarrow 4 < a \leqslant 6. \end{cases}$$

Следует заметить, что строгие неравенства f(1) > 0 и f(4) < 0 использовались потому, что при нестрогих неравенствах дискриминант должен быть нулем, а ранее показано, что ни при каких a этого быть не может.

Ответ:
$$a = -1$$
, $1 < a < 3$, $4 < a \le 6$.

Пример 13. Найти все значения параметра a, при каждом из которых существует хотя бы одно x, удовлетворяющее условиям

$$\begin{cases} x^2 + (5a+2)x + 4a^2 + 2a < 0 \\ x^2 + a^2 = 4 \end{cases}$$

 \triangle Решим сначала второе уравнение. Видно, что среди |a|>2 нет ни одного значения a, при котором уравнение $x^2+a^2=4$ имеет решение. При a=2, а также при a=-2 это уравнение имеет решение x=0, оно не удовлетворяет неравенству. Значит a=2 и a=-2 также не удовлетворяют условию задачи. Итак, если есть a, удовлетворяющие условию задачи, то они таковы, что |a|<2 и для любого такого a уравнение $x^2+a^2=4$ имеет два корня $x_1=-\sqrt{4-a^2}$ и $x_2=\sqrt{4-a^2}$.

Рассмотрим теперь квадратный трехчлен $f(x) = x^2 + (5a + 2) \times x + 4a^2 + 2a$. Он имеет дискриминант $D = (3a + 2)^2$. Если a = -2/3, то D = 0 и f(x) > 0, значит a = -2/3 не удовлетворяют условию задачи. Если $a \neq -2/3$, то D > 0 и трехчлен f(x) имеет два различных корня и принимает отрицательные значения при x, расположенных между корнями.

Итак, если есть число a, удовлетворяющее условию задачи, то оно таково, что |a| < 2, $a \ne -2/3$ и хотя бы одно из чисел x_1 и x_2 лежит между корнями трехчлена f(x), корни которого записываются в виде

$$x_3 = \frac{-(5a+2) - |3a+2|}{2}, \quad x_4 = \frac{-(5a+2) + |3a+2|}{2},$$

причем $x_3 < x_4$.

Теперь задачу можно переформулировать так: при каких значениях параметра $a \in (-2; 2)$ и $a \neq -2/3$ хотя бы одно из чисел x_1 и x_2 лежит между числами x_3 и x_4 . Этому условию отвечают две системы неравенств:

$$\begin{bmatrix} \frac{-(5a+2)-|3a+1|}{2} < -\sqrt{4-a^2} \\ -\sqrt{4-a^2} < \frac{-(5a+2)+\sqrt{4-a^2}}{2}, \end{cases}$$
 (1)

$$\left[\frac{-(5a+2) - \sqrt{4-a^2}}{2} < \sqrt{4-a^2} \right]
\sqrt{4-a^2} < \frac{-(5a+2) + \sqrt{4-a^2}}{2}.$$
(2)

Решим на области |a| < 2 и $a \neq -2/3$ отдельно систему (1) и систему (2).

На множестве -2 < a < -2/3 система (1) может быть переписана в виде

$$\left\{egin{array}{l} -a < -\sqrt{4-a^2} \ -\sqrt{4-a^2} < -4a-2 \end{array}
ight.$$
 или $\left\{egin{array}{l} \sqrt{4-a^2} < a \ 4a+2 < \sqrt{4-a^2}. \end{array}
ight.$

Очевидно, что эта система неравенств на множестве -2 < a < < -2/3 решений не имеет, т. к. левая часть первого неравенства положительна, а правая отрицательна.

На множестве -2/3 < a < 2 система (1) переписывается в виде

$$\left\{ \begin{array}{l} -4-2 < -\sqrt{4-a^2} \\ -\sqrt{4-a^2} < -a \end{array} \right. \text{ или } \left\{ \begin{array}{l} \sqrt{4-a^2} < 4a + 2 \\ a < \sqrt{4-a^2}. \end{array} \right. \tag{3} \right.$$

На рассматриваемом множестве обе части первого неравенства положительны, и поэтому, возведя в квадрат, получим равносильное неравенство $4-a^2\!<\!16a^2\!+\!16a\!+\!4$ или $17a^2\!+\!16a\!>\!0$, которое имеет решение $a\!>\!0$ и $a\!<\!-16/17$. Значит, множество решений первого неравенства системы (3), содержащихся в промежутке $-2/3\!<\!a\!<\!2$, имеет вид

$$-\frac{2}{3}a < a < -\frac{16}{17}$$
 и $0 < a < 2$. (4)

Второму неравенству системы (3) удовлетворяют все a из области -2/3 < a < 0. В области $0 \leqslant a < 2$ обе части второго неравенства системы (3) неотрицательны и значит оно равносильно неравенству $a^2 < 4 - a^2$ или $a^2 < 2$. Множество решений последнего неравенства, содержащихся в области $0 \leqslant a < 2$, имеет вид $0 \leqslant a < \sqrt{2}$. Итак, множество решений второго не-

равенства системы (3), содержащихся в области $-\frac{2}{3} < a < 2$,

есть промежуток'
$$-\frac{2}{3} < a < \sqrt{2}$$
. (5) Из (4) и (5) следует, что множество решений системы (1) из

области |a| < 2 и $a \ne -\frac{2}{3}$ является объединением двух промежутков

$$-\frac{2}{3} < a < -\frac{16}{17}$$
 и $0 < a < \sqrt{2}$.

Аналогично решается система (2). Ее решением являются $-\sqrt{2} < a < -17$. Объединяя его с (6), находим требуемое множество значений параметра $a:-\sqrt{2} < a < -\frac{16}{17}$ и $0 < a < \sqrt{2}$.

Упражнения

1. Найти все значения параметра a, при каждом из которых существует хотя бы одно x, удовлетворяющее условиям:

1)
$$\begin{cases} x^2 + (2 - 3a)x + 2a^2 - 2a < 0 \\ ax = 1, \end{cases}$$

2)
$$\begin{cases} x^2 - (3a+1)x + 2a^2 + 2a < 0 \\ x + a^2 = 0. \end{cases}$$

$$\begin{cases} x + a^2 = 0, \\ x^2 + \left(1 - \frac{3}{2}a\right)x + \frac{a^2}{2} - \frac{a}{2} < 0 \\ x = a^2 - \frac{1}{2}. \end{cases}$$

Ответы: 1)
$$-1 < a < \frac{1-\sqrt{3}}{2}$$
, $1 < a < \frac{1+\sqrt{3}}{2}$;

2)
$$-2 < a < 0$$
; 3) $-\frac{1}{2} < a < 1$.

2. Найти все значения параметра a, для каждого из которых существует ровно два значения x, удовлетворяющих системе уравнений

$$\begin{cases} |x^2 - 7x + 6| + x^2 + 5x + 6 - 12|x| = 0 \\ x^2 - 2(a - 2)x + a(a - 4) = 0. \end{cases}$$

Ответ: a = 1, a = 2, $5 \le a \le 6$.

3. Найти все значения параметра a, для каждого из которых существует только одно значение x, удовлетворяющее системе уравнений

$$\begin{cases} |x^2 + 5x + 4| - 9x^2 + 5x + 4 - 10x |x| = 0 \\ x^2 - 2(a+1)x + a(a+2) = 0. \end{cases}$$

Ответ: a=1 -3 < a < -1, $-6 \le a < -4$.

4. Найти все значения параметра a, для каждого из которых существует ровно два значения x, удовлетворяющих системе уравнений

$$\begin{cases} |x^2 + 7x + 6| + x^2 - 5x + 6 - 12|x| = 0\\ x^2 - 2(a+2)x + a(a+4) = 0. \end{cases}$$

Ответ: a = -1, a = -2, $-6 \le a \le -5$.

Примеры с решениями

Пример 14. Для каждого значения a решить систему неравенств

$$\begin{cases} a(x-2) \ge x-3 \\ 8(a+1)x > 8ax + 9. \end{cases}$$

△ После преобразований получим систему

$$\begin{cases} (a-1)x \geqslant 2a-3 \\ x > \frac{9}{8}, \end{cases}$$

которая равносильна совокупности двух систем

$$\begin{cases} a > 1 \\ x \geqslant \frac{2a-3}{a-1} \\ x > \frac{9}{8} \end{cases} \quad \text{if } \begin{cases} a < 1 \\ x \leqslant \frac{2a-3}{a-1} \\ x > \frac{9}{8} \end{cases}$$

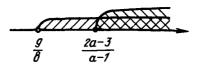
Решим каждую систему отдельно. Если в первой системе $\frac{2a-3}{a-1}$ располагается левее точки 9/8, как это показано на

числовой оси,

$$\frac{2a-3}{a-1} \qquad \frac{g}{8}$$

тогда решением будет множество $x>\frac{9}{8}$, но при этом $\frac{2a-3}{a-1}\leqslant\frac{9}{8}\Rightarrow$ с учетом того, что a>1 имеем $2a-3\leqslant\frac{9}{8}(a-1)\Rightarrow a\leqslant\frac{15}{7}$, т. е. при $1< a\leqslant\frac{15}{7}$.

Если же $\frac{2a-3}{a-1}$ располагается правее точки 9/8, как это показано на числовой оси,



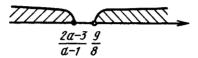
тогда решением будет множество

$$x > \frac{2a-3}{a-1}$$

Но при этом $\frac{9}{8} < \frac{2a-3}{a-1}$ или a > 15/7.

Итак, если $1 < a \le 15/7$, то x > 9/8, и если a > 15/7, то $\frac{2a-3}{a-1} < x$.

Решим вторую систему, иллюстрируя решение на числовой оси



Очевидно, что при таком расположении точек система несовместна.

Если же
$$\frac{2a-3}{a-1} > \frac{9}{8}$$
,

то решением системы будут все $\frac{9}{8} < x < \frac{2a-3}{a-1}$.

При
$$2a-3<\frac{9}{8}(a-1)$$
, т. е. при $a<\frac{15}{17}$,

но с учетом a < 1 системы, получим a < 1

Итак, при
$$a < 1$$
 имеем $\frac{9}{8} < x < \frac{2a-3}{a-1}$.

Видно, что если $a\!=\!1$, то исходная система имеет решение при $x\!>\!\frac{9}{8}$.

Ответ: При
$$a < 1$$
 $\left(\frac{9}{8}; \frac{2a-3}{a-1}\right);$ при $1 \le a \le \frac{15}{7} \left(\frac{9}{8}; +\infty\right);$ при $a > \frac{15}{7} \left[\frac{2a-3}{a-1}; +\infty\right)$

Пример 15. Найти все значения a, при которых не существует ни одного x, одновременно удовлетворяющего неравенствам:

$$\begin{cases} ax^2 + (a-3)x + \frac{2}{a} - 2a \ge 0 \\ ax \ge a^2 - 2. \end{cases}$$

△ Рассмотрим два случая.

Первый, когда a>0, тогда систему неравенств можно записать в виде

$$\begin{cases} a^2 x^2 + a(a-3) x - 2a^2 + 2 \ge 0 & (1') \\ x > \frac{a^2 - 2}{a}. & (1'') \end{cases}$$

Посмотрим, существуют ли a, при которых эта система несовместима, т. е. неравенства (1') и (1") не имеют ни одного общего решения. Для этого достаточно решить квадратичное неравенство (1') и сопоставить полученные решения с (1") (удобнее это сделать с помощью числовой оси). Находим корни трехчлена, стоящего в левой части (1'):

$$x_1 = \frac{1+a}{a}, \quad x_2 = \frac{2(1-a)}{a}.$$

Чтобы записать решение неравенства (1'), мы должны знать, как расположены на числовой оси относительно друг друга числа $\frac{a^2-2}{a}$, x_1 , x_2 . Различные возможные ситуации представлены на рис. 38 a, b, b и рис. 39, b, b. Отсюда видно, что система всегда имеет решение (заштрихованные в клетку участки оси), и, следовательно, не существует b, удовлетворяющих условию задачи.

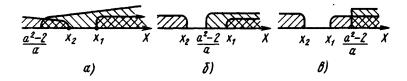


Рис. 38

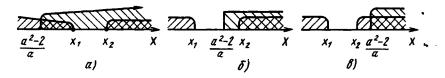


Рис. 39

Второй случай, когда a < 0. При этом система принимает вид:

$$\begin{cases} a^2 x^2 + a(a-3)x + 2(1-a^2) \le 0 & (2') \\ x \le \frac{a^2 - 2}{a}. & (2'') \end{cases}$$

Легко установить, что при a < 0 $x_1 > x_2$ (неравенство $\frac{1+a}{a} > \frac{2(1-a)}{a}$ удовлетворяется при a < 0 и $a > \frac{1}{3}$). Значит решени-

ем (2') будет $x_2 \leqslant x \leqslant x_1$. Здесь необходимо рассмотреть три случая (рис. 40, a, b, b) расположения точек x_1 , x_2 и $\frac{a^2-2}{a}$.

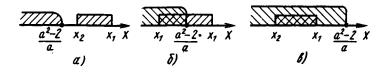


Рис. 40

Из рис. 40 видно, что система (2) несовместима только в случае рис. 40, a. Для этого должно быть

$$\frac{a^2-2}{a} < x_2 \Rightarrow \frac{a^2-2}{a} < \frac{2(1-a)}{a} \Rightarrow a^2+2a-4 > 0,$$

откуда с учетом того, что a < 0, получаем решение

$$a < -1 - \sqrt{5}$$
.

Ответ: при $a < -1 - \sqrt{5}$. \blacktriangle

Пример 16. Решить систему неравенств

$$\begin{cases} \frac{x}{a} + \frac{x}{b} > \frac{a+b}{ab} \\ 10 - \frac{5x}{2} > 0. \end{cases}$$

 \triangle Решением' второго неравенства является интервал x < 4. Решаем первое неравенство. Допустимые значения a и b такие, что $a \neq 0, b \neq 0$.

Пусть числа a и b положительны, тогда ab>0 и, умножив обе части неравенства на ab, получим x(a+b)>a+b. В нашем случае a+b>0, значит x>1. С учетом решения второго неравенства получим 1< x<4.

Пусть числа a и b отрицательны, тогда также ab>0, но a+b<0 и из неравенства x(a+b)>a+b следует x<1. Этот интервал содержится в интервале x<4, а потому множество всех решений системы составляет интервал $(-\infty;1)$.

Пусть a и b разных знаков, тогда ab < 0; умножив обе части первого неравенства на ab, получим (a+b)x < a+b и придется рассмотреть три случая.

- 1) Сумма a+b>0, a>-b, тогда получим x<1 и решение системы интервал $(-\infty; 1)$.
- 2) Сумма a+b<0, т. е. a<-b, тогда из (a+b)x< a+b получим: x>1 и решение системы интервал (1; 4).
 - 3) a = -b первое неравенство не имеет смысла.

Ответ: при a>0, b>0, либо при ab<0 (числа a и b противо-

положны по знаку) и a < -b-1 < x < 4; при a < 0, b < 0, либо при ab < 0 и $a > -b - \infty < x < 1$; при a = -b нет решений. \blacktriangle

Пример 17. Найти все значения k, при каждом из которых существует хотя бы одно общее решение у неравенств

$$x^2 + 4kx + 3k^2 > 1 + 2k$$
 u $x^2 + 2kx \le 3k^2 - 8k + 4$.

△ Общее решение будет, если система неравенств

$$\begin{cases} x^2 + 4kx + 3k^2 - 2k - 1 > 0 \\ x^2 + 2kx - 3k^2 + 8k - 4 \le 0 \end{cases}$$

имеет хотя бы одно общее решение.

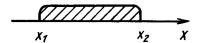
При фиксированном к корни квадратного трехчлена

$$x^2 + 2kx - 3k^2 + 8k - 4$$
 есть $x_1 = -k - 2|k - 1|$ и $x_2 = -k + 2|k - 1|$

и решение второго неравенства системы есть

$$-k-2|k-1| \le x \le -k+2|k-1|$$
.

или на числовой оси



Возможны следующие четыре схемы расположения графика трехчлена f первого неравенства системы, приведенные на рис. 41.

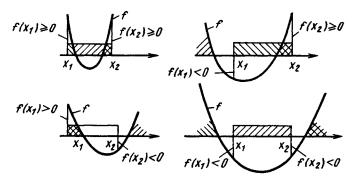


Рис. 41

На рисунке штриховка в клетку — это общее решение.

1-я схема: $f(x_1) \ge 0$ и $f(x_2) \ge 0$

$$\begin{cases} f(x_1) = (-k-2|k-1|)^2 + 4k(-k-2|k-1|) + 3k^2 - 2k - 1 \geqslant 0 \\ f(x_2) = (-k+2|k-1|)^2 + 4k(-k+2|k-1|) + 3k^2 - 2k - 1 \geqslant 0 \end{cases} \Rightarrow$$

$$\begin{cases} k^2 + 4|k-1| + 4(k-1)^2 - 4k^2 - 8k|k-1| + 3k^2 - 2k - 1 \geqslant 0 \\ k^2 - 4|k-1| + 4(k-1)^2 - 4k^2 + 8k|k-1| + 3k^2 - 2k - 1 \geqslant 0 \end{cases} \Rightarrow \\ \begin{cases} 4k^2 - 4k|k-1| - 10k + 3 \geqslant 0 \\ 4k^2 + 4k|k-1| - 10k + 3 \geqslant 0 \end{cases} \Rightarrow \begin{cases} 4k^2 - 4k^2 + 4k - 10k + 3 \geqslant 0 \\ 8k^2 - 4k - 10k + 3 \geqslant 0, \end{cases} \\ \begin{cases} -6k + 3 \geqslant 0 \\ 8k^2 - 14k + 3 \geqslant 0 \end{cases} \end{cases} \begin{cases} k \leqslant \frac{1}{2} \\ k \leqslant \frac{1}{4} \text{ if } k \geqslant \frac{3}{2} \end{cases} \Rightarrow k \leqslant \frac{1}{2}.$$

2-я схема: $f(x_1) \le 0$ и $f(x_2) \ge 0 \Rightarrow k \ge 3/2$.

3-я схема: $f(x_1) \ge 0$ и $f(x_2) \le 0$ $\frac{1}{4} \le k \le \frac{1}{2}$.

4-я схема: решение — пусто. 🛦

Ответ: $k \leqslant \frac{1}{2}$ и $k \geqslant \frac{3}{2}$.

Пример 18. Найти все значения a, при каждом из которых для любого значения b система

$$\begin{cases} bx - y - az^2 = 0\\ (b - 6)x + 2by - 4z = 4 \end{cases}$$

имеет по крайней мере одно решение (x, y, z).

 \triangle Система линейна относительно переменных x, y и приводится к виду

$$\begin{cases} y = bx - az^2 \\ (b+2)(2b-3)x = 2abz^2 + 4z + 4; \end{cases}$$

- а) если $b \in (-2; 3/2)$, то система совместна при любом значении a (достаточно взять z=0);
- б) если b=-2, то система имеет решение тогда и только тогда, когда его имеет уравнение $-4az^2+4z+4=0$ т. е. когда $a \ge -1/4$;
- в) если b=3/2, то аналогично случаю б) система совместна тогда и только тогда, когда $a\leqslant 1/3$.

Исходная система совместна при любом значении b при тех a, которые удовлетворяют всем условиям a), b), b0, b1, b2.

$$-1/4 \le a \le 1/3$$
.

Упражнения

1. Для каждого значения а решить систему неравенств

1)
$$\begin{cases} x^2 + 4x + 3 + a < 0 \\ 2x + a + 6 > 0, \end{cases}$$
 2) $\begin{cases} x^2 + 2x + a \le 0 \\ x^2 - 4x - 6a \le 0, \end{cases}$

3)
$$\begin{cases} \frac{(1-a)x-a}{x-2(1-a)} \ge 0 \\ x-8 \ge ax, \end{cases}$$
 4)
$$\begin{cases} 7 - \left(\frac{15a}{4} - 30\right)x > 10 \\ \frac{x-1}{a-1} - 1 < \frac{a}{1-a} - x, \end{cases}$$

5)
$$\begin{cases} \frac{2x^2 + ax + 4}{x^2 - x + 1} < 4 \\ \frac{2x^2 + ax - 6}{x^2 - x + 1} > -6. \end{cases}$$

Ответы: 1) При $a\leqslant \frac{-5+\sqrt{13}}{2}$ $\frac{-a-6}{2}< x<-2+\sqrt{1-a};$ при $\frac{-5+\sqrt{13}}{2}< a<1$ $-2-\sqrt{1-a}< x<-2+\sqrt{1-a};$

при $a \geqslant 1$ решений нет;

- 2) при a = 0 x = 0; при $a \neq 0$ решений нет;
- 3) при a=0 x \geqslant 8; при $a \neq 0$ решений нет;
- 4) при $a \leqslant 0$ и $1 \leqslant a \leqslant 8$ решений нет; при 0 < a < 1 $x > \frac{4}{40 5a}$;

при a > 8 $x < \frac{4}{40-5a}$;

- 5) при a<-4 $\frac{a+4}{2}< x<0$; при $-4\leqslant a\leqslant 2$ решений нет; при 2< a<6 $\frac{6-a}{8}< x<\frac{a+4}{2}$; при $a\geqslant 6$ $0< x<\frac{a+4}{2}$.
 - 2. Для каждого значения а решить неравенство

$$\frac{ax-(1-a)a}{a^2-ax-1}>0.$$

Ответ: решений нет при a = 0, $a = -\frac{1}{2}$ и

$$a=1$$
; $1-a < x < \frac{a^2-1}{a}$ при $-\frac{1}{2} < a < 0$ или

$$a>1; \frac{a^2-1}{a}< x<1-a$$
 при $a<-\frac{1}{2}$ и $0< a<1.$

3. Для каждого значения а решить систему неравенств

$$\begin{cases} \frac{ax}{a-2} - \frac{x-1}{3} < \frac{2x+3}{4} \\ \frac{x(10-a)}{2} + a > \frac{a(x+2)}{2} - 5x - 6. \end{cases}$$

Ответ: $x < \frac{5(a-2)}{2(a+10)}$ при a < -10 и a > 2; $r \in \mathbb{R}$ при a = -10; решений нет при a = 2; $x > \frac{5(a-2)}{2(a+10)}$ при a < 2,

4. Найти все a, при которых не существует ни одного x, одновременно удовлетворяющих его неравенствам:

1)
$$\begin{cases} (x-a)(ax-2a-3) \ge 0 \\ ax > 4, \end{cases}$$
 2) $\begin{cases} \frac{a^2x+2a}{ax+a^2-2} \ge 0 \\ ax+a > \frac{5}{4}, \end{cases}$

3)
$$\left\{ \frac{(1-a)x-a}{x-2(1-a)} \geqslant 0. \right.$$

Ответы: 1)
$$-2 < a \le 0$$
; 2) $a \le -\frac{1}{2}$, $a = 0$; 3)

5. При каких значениях а система неравенств

$$\begin{cases} ax - 1 \leq 0 \\ x - 4a \geq 0. \end{cases}$$

имеет хотя бы одно решение?

Ответ: $a \in]-\infty; \frac{1}{2}].$

6. Найти все значения k, при каждом из которых каждое решение неравенства $x^2+3k^2-1\leqslant 2k(2x-1)$ является решением неравенства $x^2+(2x-1)k+k^2>0$.

Ответ: $k < \frac{9 - \sqrt{17}}{32}$.

7. Найти все значения k, при каждом из которых любое число является решением хотя бы одного из неравенств

$$x^2 + 5k^2 + 8k > 2(3kx + 2)$$
 if $x^2 + 4k^2 \ge k(4x + 1)$.

Ответ: $k \le 0$, k = 1.

8. Найти все значения k, при каждом из которых неравенство $\frac{x^2+k^2}{k(6+x)}\geqslant 1$ выполняется для всех x, удовлетворяющих условию -1 < x < 1.

-1 < x < 1. Ответ: $k \geqslant \frac{-7+3\sqrt{5}}{2}$.

9. Найти все значения a, при каждом из которых для любого значения b система

$$\begin{cases} x - by + az^2 = 0\\ 2bx + (b - 6)y + 8z = 8 \end{cases}$$

имеет по крайней мере одно решение (x, y, z).

Ответ: $-\frac{1}{2} \leqslant a \leqslant \frac{2}{3}$.

8. ПРИМЕРЫ НА ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ

Пример 1. Найдите все значения параметра a, при которых функция

$$y = a8^{x} + (3a+1)4^{x} + (9a+1)2^{x} + 2$$

не имеет экстремумов.

△ Найдем производную функции

$$y'(x) = a \cdot 8^{x} \ln 8 + (3a+1)4^{x} \ln 4 + (9a+1)2^{x} \ln 2 =$$

$$= 3a4^{x} + 2(3a+1)2^{x} + (9a+1)2^{x} \ln 2.$$

Так как $2^x \ln 2 > 0$, знак производной y'(x) совпадает со знаком квадратичной функции:

$$\varphi(z) = 3az^2 + 2(3a+1)z + (9a+1)$$
, где $2^x = z > 0$.

Отметим, что функция $z=2^x$ возрастающая и каждому значению z>0 соответствует единственное значение

$$x = \log_2 z$$
.

Рассмотрим возможные частные случаи.

- 1) Если квадратное уравнение $\varphi(z)=0$ имеет два различных корня, из которых хотя бы один положительный, то заданная функция y(x) имеет экстремум. Действительно, если z_0 один из корней, то $y'(x_0)=0$, где $x_0=\log_2 z_0$. При переходе аргумента x через точку x_0 переменная z переходит через точку z_0 , при этом меняется знак квадратичной функции $\varphi(z)$, а значит и знак производной y'(x).
- 2) Если квадратное уравнение $\varphi(z)$ имеет один корень z_0 , то при $z_0 > 0$ производная y'(x) обращается в нуль при $x = x_0 = \log_2 z_0$, но при переходе через эту точку знак функции $\varphi(z)$ не меняется. Если $z_0 \leqslant 0$, то $\varphi(z)$ сохраняет знак, производная y'(x) в нуль не обращается. Таким образом, если уравнение $\varphi(z) = 0$ имеет один корень (точнее, корни его совпадают), то функция y(x) экстремума не имеет.
- 3) Если среди корней уравнения $\varphi(z) = 0$ нет положительных, то y'(x) в нуль не обращается и сохраняет знак при всех x.
- 4) Уравнение $\varphi(z) = 0$ может вообще не иметь корней, тогда y'(x) сохраняет знак и y(x) экстремумов не имеет.
- 5) Уравнение $\varphi(z)=0$ превращается в линейное, когда коэффициент при z^2 обращается в нуль. Если его корень положителен, функция имеет экстремум; в противном случае экстремума нет.

Исследуем функцию $\varphi(z) = 3az^2 + 2(3a+1)z + (9a+1)$.

а) Уравнение $\varphi(z)=0$ не имеет решений или имеет совпадающие корни, если $D\leqslant 0$, т. е.

$$(3a+1)^2 - 3a(9a+2) \le 0 \Leftrightarrow 18a^2 - 3a - 1 \ge 0.$$

Этому неравенству удовлетворяют значения $a\leqslant -\frac{1}{6}$ или $a\geqslant \frac{1}{3}$.

б) Если оба корня неположительны, то а удовлетворяет системе неравенств

$$\begin{cases} D > 0 \\ -\frac{3a+1}{a} \le 0 \\ \frac{9a+1}{a} \ge 0, & \text{t. e.} \end{cases} \begin{cases} -\frac{1}{6} < a < \frac{1}{3} \\ a \le -\frac{1}{3} \\ a > 0, & \text{t. e. } 0 < a < \frac{1}{3}. \end{cases}$$

в) При a=0 получаем уравнение 2z+1=0, которое имеет единственный корень $z_1=-\frac{1}{2}$ следовательно, при z>0 $\varphi(z)>>0$.

Объединяя найденные в пунктах а), б), в) ответы, получаем решение задачи: $a \in (-\infty; -\frac{1}{6}] \cup [0; +\infty)$.

Пример 2. На плоскости xy укажите все точки, через которые не проходит ни одна из кривых семейства

$$\triangle y = x^2 - 2(1+2p)x + 2p^2 - 1, p \in \mathbb{R}.$$

Выделив слагаемые, зависящие от p, перепишем уравнение кривой в виде $y=-(x+1)^2+2(p-x)^2$. Меняя значения p (при фиксированном x), мы можем получить любое значение $y\geqslant -(x+1)^2$. Так как $(p-x)^2\geqslant 0$, значения $y<-(x+1)^2$ получить нельзя. Следовательно, через точки плоскости xy, лежащие ниже кривой $y=-(x+1)^2$, не проходит ни одна из кривых заданного семейства (рис. 42).

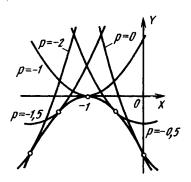


Рис. 42

Можно использовать производную при решении этого примера. Фиксируем значение x и рассматриваем как квадратичную функцию p. Найдем наиеньшее значение этой функции при каждом x:y'(p)=-4x+4p, y'(p)=0 при p=x, $\min y(p)=y)p)|_{p=x}=x^2-2(1+2x)x+2x^2-1=-(x+1)^2$.

Значения $y < -(x+1)^2$ не могут быть получены ни при каком p. \blacktriangle

ОГЛАВЛЕНИЕ

Предисловие	3
Введение	4
1. Решение уравнений первой степени с одним неизвестным	5
2. Решение линейных неравенств	10
	12
4. Решение квадратных уравнений и неравенств	23
Утверждения о расположении корней приведенного	
	33
	42
	46
	54
5. Решение иррациональных уравнений и неравенств	58
6. Решение показательных и логарифмических уравнений и	
неравенств	78
	97
	97
	99
Решение линейных систем с модулем	05
	12
8. Примеры на применение производной	41

Редактор С. М. Макеева Технический редактор А. Я. Дубинская Корректоры: Т. С. Грачева, Е. Ю. Уралова

ИБ №001

Сдано в набор 20.07.92 г. Подписано в печать 10.09.92 г. Формат $60\times88/16$. Бумага офсетная. Гарнитура литературная. Печать офсетная Усл. печ. л. 9.0 Усл. кр-отт. 9.25 Уч.-изд. л. 11.0 Гираж 20.000 экз. Заказ 425т

Рецензент Н. И. Авраамов

Родионов Е. М.

Справочник по математике для поступающих в вузы. Решение задач с параметрами. М.: МЦ «Аспект», 1992. 144 с.: ил.

ISBN 5-88566-001-8

Впервые в нашей стране создан справочник, который содержит теоретические сведения и систематизированный набор задач с параметрами. Методическое построение справочника позволяет углубленно изучить приемы решения и самостоятельно подготовиться к поступлению в вуз с повышенной математической программой. Типовые задачи сопровождаются подробным разбором решений. По каждой теме приводятся упражнения с ответами для закрепления изучаемого материала.

Справочник создан на основе преподавания математики на подготовительных курсах МГТУ. Использованы также варианты вступительных экзаменов МГУ, МИФИ и др. вузов.

Для поступающих в вузы и преподавателей.

Р
$$\frac{1602000000-001}{J124(03)-92}$$
 Без объявления