Драма вокруг палимпсеста по своим масштабам вполне соответствует значению документа, который наконец-то позволил нам изучить научный метод великого геометра. МетодКогда читаешь любой древнегреческий геометрический трактат, невольно восхищаешься лаконичностью стиля и точностью формулировок и доказательств теорем, которым уже более двух тысяч лет. Но чего в этих книгах точно не найдешь – это объяснений, каким образом эти теоремы пришли в голову автору. Выдающийся трактат Архимеда «Метод механических теорем» заполняет этот загадочный пробел – там рассказано, как сам Архимед убеждался в истинности некоторых теорем еще до того, как придумывал, как их доказать. Приведу отрывок из его послания математику Эратосфену Киренскому (ок. 276–194 гг. до н. э.) во введении к трактату (Dijksterhuis 1957). В этой книге я шлю тебе доказательства этих теорем. Поскольку, как я уже упоминал, я знаю, что ты человек усердный, прекрасный учитель философии и очень интересуешься любыми математическими исследованиями, какие только ни попадутся тебе, я решил, что будет полезно описать и передать тебе в этой же книге некий особый метод, который даст тебе возможность ставить определенные математические вопросы при помощи механики (курсив мой. – М. Л .). Я уверен, что этот же метод не менее полезен при поиске доказательств тех же теорем. В некоторых случаях мне сначала становилось понятно, что происходит, благодаря механическому методу, а затем уже это было доказано геометрически, поскольку изучение этих случаев вышеуказанным методом не позволяет вывести настоящее доказательство. Ведь гораздо проще предоставить доказательство, когда мы уже получили определенные знания посредством указанного метода, чем найти его безо всяких знаний. Архимед затрагивает здесь один из важнейших принципов научного и математического исследования в целом: зачастую гораздо труднее формулировать вопросы и теоремы, которые стоит исследовать, чем искать ответы на известные вопросы и доказательства известных теорем. Так как же Архимед находил новые теоремы? Опираясь на тончайшее понимание механики, равновесия и принципов рычага, он мысленно взвешивал тела и фигуры, чьи площади и объемы пытался найти, и сравнивал их вес с весом уже известных тел и фигур. А когда ему удавалось таким образом найти неизвестную площадь или объем, было уже гораздо легче геометрически доказать истинность ответа. Именно поэтому «Метод» начинается с ряда утверждений относительно центров тяжести и лишь затем переходит к геометрическим предположениям и их доказательствам. — 41 —
|