Был ли Бог математиком?

Страница: 1 ... 1314151617181920212223 ... 194

Слово «гномон» (в сущности, «маркер») происходит от названия вавилонского астрономического устройства для определения времени, похожего на солнечные часы[10]. Похоже, что этот аппарат привез в Грецию учитель Пифагора, естествоиспытатель Анаксимандр (ок. 611–547 гг. до н. э.). Не приходится сомневаться, что геометрические представления наставника и их применение в космологии – науке о Вселенной в целом – произвели на ученика сильное впечатление. Впоследствии слово «гномон» стало обозначать и чертежный угольник, и фигуру в виде двух полос, состыкованных под прямым углом, – если приложить ее к квадрату, получится квадрат большего размера (рис. 2). Обратите внимание, что если добавить, например, к квадрату 3 ? 3 семь камешков, выложенных в форме прямого угла (гномона), получится квадрат 4 ? 4, состоящий из 16 камешков. Это фигурное изображение следующего свойства: в последовательности нечетных целых чисел 1, 3, 5, 7, 9,… сумма любого количества последовательных членов (начиная с 1) всегда дает квадрат. Например, 1 = 12, 1 + 3= 4 = 22, 1 + 3 + 5 = 9 = 32, 1 + 3 + 5 + 7 = 16 = 42, 1 + 3 + 5 + 7 + 9 = 25 = 52 и так далее. Такие тесные отношения между гномоном и квадратом, который он «обнимает», пифагорейцы считали символом познания в целом: знание «обнимает» познанное. Следовательно, по мнению пифагорейцев, числа не просто описывали физический мир, но и лежали в основе умственных и эмоциональных процессов.

Рис. 2

Квадраты целых чисел, которые ассоциируются с гномонами, вероятно, привели Пифагора и к формулировке его знаменитой теоремы. Это прославленное математическое утверждение гласит, что у любого прямоугольного треугольника площадь квадрата, достроенного на самой длинной стороне – гипотенузе, равна сумме площадей квадратов, достроенных на двух других сторонах – катетах (рис. 3). Карикатуристы под псевдонимом «Франк и Эрнест» посвятили истории открытия теоремы смешную картинку (рис. 4). Как видно на рис. 2, если добавить к квадрату 4 ? 4 гномон 9 = 32, получится новый квадрат 5 ? 5, то есть 32 + 42 = 52. Поэтому числа 3, 4, 5 могут быть длинами сторон прямоугольного треугольника. Наборы целых чисел, обладающие этим свойством (например, 5, 12, 13, поскольку 52 + 122 = 132), называются пифагоровыми тройками.

Рис. 3

Рис. 4

Мало какие математические теоремы могут похвастаться такой «узнаваемостью», как теорема Пифагора. В 1971 году, когда республика Никарагуа выбирала «десять математических формул, изменивших облик планеты» для коллекционной серии марок, теорема Пифагора появилась на второй марке (рис. 5); на первой значилось «1 + 1 = 2»).

— 18 —
Страница: 1 ... 1314151617181920212223 ... 194