Без сомнения, результат, который принес ученому славу среди его современников, — это вычисление орбиты Цереры, карликовой планеты, открытой в 1801 году Джузеппе Пиацци из Палермской обсерватории. Общее признание побудило Гаусса углубиться в астрономию, и он стал директором Гёттингенской обсерватории. Скорее всего, астрономические наблюдения отвлекли ученого от работы в области чистой математики, где было сложнее найти славу. Для математики определение орбиты Цереры может быть анекдотическим фактом, но метод, использованный для ее вычисления, существенно подтолкнул развитие науки. Это был метод наименьших квадратов. В этом случае большую важность имеет процесс, использованный для достижения результата, чем сам результат. Приписывание авторства этого метода Гауссу вызвало некоторую полемику, поскольку Адриен Мари Лежандр, который был на 25 лет старше Гаусса, также оспаривал первенство этого открытия. Соперничество с Лежандром длилось много лет и распространилось на многие области математики. Очень часто оказывалось, что если Лежандр утверждал, что открыл новую математическую истину, Гаусс опровергал это, аргументируя, что он знает ее и уже использовал этот результат. В письме Гаусса от 30 июля 1806 года коллеге-астроному по фамилии Шумахер, с которым их связывала большая дружба, ученый сетовал: «Похоже, что мне предназначено совпадать с Лежандром почти во всех своих теоретических работах». Такое соперничество встречалось очень часто и объяснялось методами работы и распространения результатов у ученых того времени. В течение всей своей жизни Гаусс упорно вступал в открытую борьбу за первенство своих открытий. И только после его смерти, когда были изучены все дневники и письма, стало ясно, что правда была на стороне Гаусса. В чем нет никаких сомнений, так это в том, что метод наименьших квадратов оказался очень полезным инструментом для разрешения многих проблем, в которых речь идет об установлении функции, наилучшим образом приближающейся к множеству данных с критерием минимизации. Наиболее важные примеры применения этого метода находятся в области статистики, где они достигают вершины в оценке параметров населения с помощью модели, построенной благодаря такому известному заключению, как теорема Гаусса — Маркова. Любопытно, что имя Гаусса в области статистики обычно связывают со знаменитым «гауссовым колоколом», однако на самом деле открытием нормального распределения мы обязаны Абрахаму де Муавру. Гаусс очень рано подступился к так называемой основной теореме алгебры, в которой установлено, что у многочлена столько корней (то есть значений, при которых многочлен равен нулю), сколько показывает его степень. Эта проблема была темой диссертации ученого. В течение жизни он представил несколько доказательств этого результата, каждый раз все более утонченных и понятных. Как и в случае с открытием орбиты Цереры, во время поиска доказательств Гаусс выявил новые и очень полезные математические конструкции, такие как комплексные числа. В 1799 году ученый доказал, что основываясь на таком особом числе, как корень из -1 (или числе i), математики могут решить любое полиномиальное уравнение. — 3 —
|